You can't always get what you want: Predictive processing and consciousness
PDF

Keywords

Consciousness
Predictive Processing
Neural Correlates of Consciousness

How to Cite

You can’t always get what you want: Predictive processing and consciousness. (2021). Philosophy and the Mind Sciences, 2. https://doi.org/10.33735/phimisci.2021.80

Abstract

The predictive processing framework has gained significant popularity across disciplines investigating the mind and brain. In this article we critically examine two of the recently made claims about the kind of headway that the framework can make in the neuroscientific and philosophical investigation of consciousness. Firstly, we argue that predictive processing is unlikely to yield significant breakthroughs in the search for the neural correlates of consciousness as it is still too vague to individuate neural mechanisms at a fine enough scale. Despite its unifying ambitions, the framework harbors a diverse family of competing computational models which rely on different assumptions and are under-constrained by neurological data. Secondly, we argue that the framework is also ill suited to provide a unifying theory of consciousness. Here, we focus on the tension between the claim that predictive processing is compatible with all of the leading neuroscientific models of consciousness with the fact that most attempts explaining consciousness within the framework rely heavily on external assumptions.

PDF

References

Aitchison, L., & Lengyel, M. (2017). With or without you: Predictive coding and Bayesian inference in the brain. Current Opinion in Neurobiology, 46, 219–227. https://doi.org/10.1016/j.conb.2017.08.010

Aru, J., Bachmann, T., Singer, W., & Melloni, L. (2012). Distilling the neural correlates of consciousness. Neuroscience & Biobehavioral Reviews, 36(2), 737–746. https://doi.org/10.1016/j.neubiorev.2011.12.003

Bailer-Jones, D. M. (1999). Tracing the development of models in the philosophy of science. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 23–40). Springer US.

Bayne, T. (2007). Conscious states and conscious creatures: Explanation in the scientific study of consciousness. Philosophical Perspectives, 21(1), 1–22. https://doi.org/https://doi.org/10.1111/j.1520-8583.2007.00118.x

Bayne, T., & Chalmers, D. J. (2003). What is the unity of consciousness? In A. Cleermans (Ed.), The unity of consciousness: Binding, integration, dissociation (pp. 23–58). Oxford University Press.

Bishop, C. (2006). Pattern recognition and machine learning. Springer-Verlag.

Block, N. (2005). Two neural correlates of consciousness. Trends in Cognitive Sciences, 9(2), 46–52. https://doi.org/10.1016/j.tics.2004.12.006

Block, N. (2007). Consciousness, accessibility, and the mesh between psychology and neuroscience. Behavioral and Brain Sciences, 30(5-6), 481–499. https://doi.org/10.1017/S0140525X07002786

Block, N. (2011). Perceptual consciousness overflows cognitive access. Trends in Cognitive Sciences, 15(12), 567–575. https://doi.org/10.1016/j.tics.2011.11.001

Block, N. (2019). What is wrong with the no-report paradigm and how to fix it. Trends in Cognitive Sciences, 23(12), 1003–1013. https://doi.org/10.1016/j.tics.2019.10.001

Bruineberg, J., Dołęga, K., Dewhurst, J., & Baltieri, M. (2020). The emperor’s new Markov blankets. http://philsci-archive.pitt.edu/18467/

Cao, R. (2020). New labels for old ideas: Predictive processing and the interpretation of neural signals. Review of Philosophy and Psychology, 11(3), 517–546. https://doi.org/10.1007/s13164-020-00481-x

Chalmers, D. J. (1996). The conscious mind: In search of a fundamental theory. Oxford Univeristy Press.

Chalmers, D. J. (2000). What is a neural correlate of consciousness? In T. Metzinger (Ed.), Neural correlates of consciousness (pp. 17–39). The MIT Press.

Chalmers, D. J. (2013). How can we construct a science of consciousness? Annals of the New York Academy of Sciences, 1303(1), 25–35. https://doi.org/https://doi.org/10.1111/nyas.12166

Chalmers, D. J. (2018). The meta-problem of consciousness. Journal of Consciousness Studies, 25(9-10), 6–61.

Churchland, P. M. (1988). Perceptual plasticity and theoretical neutrality: A reply to Jerry Fodor. Philosophy of Science, 55(June), 167–187. https://doi.org/10.1086/289425

Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.

Clark, A. (2019). Consciousness as generative entanglement. Journal of Philosophy, 116(12), 645–662. https://doi.org/10.5840/jphil20191161241

Clark, A., Friston, K., & Wilkinson, S. (2019). Bayesing qualia: Consciousness as inference, not raw datum. Journal of Consciousness Studies, 26(9-10), 19–33.

Colombo, M., & Hartmann, S. (2017). Bayesian cognitive science, unification, and explanation. The British Journal for the Philosophy of Science, 68, 451–484.

Colombo, M., & Wright, C. (2017). Explanatory pluralism: An unrewarding prediction error for free energy theorists. Brain and Cognition, 112, 3–12. https://doi.org/10.1016/j.bandc.2016.02.003

Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. Harcourt Brace; Co.

Damasio, A. R. (2011). Self comes to mind: Constructing the conscious brain. Pantheon.

Dehaene, S. (2014). Consciousness and the brain. Viking.

Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211. https://doi.org/10.1016/j.tics.2006.03.007

Dennett, D. C. (2013). Expecting ourselves to expect: The Bayesian brain as a projector. The Behavioral and Brain Sciences, 36(3), 209–210. https://doi.org/10.1017/S0140525X12002208

Dennett, D. C. (1991). Real patterns. Journal of Philosophy, 88(1), 27–51. https://doi.org/10.2307/2027085

Dennett, D. C. (1996). Facing backwards on the problem of consciousness. Journal of Consciousness Studies, 1(3), 4–6.

Dennett, D. C. (2015). Why and how does consciousness seem the way it seems? (W. Wanja & T. Metzinger, Eds.). Open MIND.

Dołęga, K., & Dewhurst, J. (2019). Bayesian frugality and the representation of attention. Journal of Consciousness Studies, 26(3-4), 38–63.

Dołęga, K., & Dewhurst, J. (2020). Fame in the predictive brain: A deflationary approach to explaining consciousness in the prediction error minimization framework. Synthese. https://doi.org/10.1007/s11229-020-02548-9

Egan, F. (2014). How to think about mental content. Philosophical Studies, 170(1), 115–135. https://doi.org/10.1007/s11098-013-0172-0

Egan, F. (2020). A deflationary account of mental representation. In J. Smortchkova, K. Dołęga, & T. Schlicht (Eds.), What are mental representations? (pp. 26–53). Oxford University Press.

Fazekas, P., & Overgaard, M. (2018). Perceptual consciousness and cognitive access: An introduction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1755). https://doi.org/10.1098/rstb.2017.0340

Fernández-Espejo, D., & Owen, A. M. (2013). Detecting awareness after severe brain injury. Nature Reviews. Neuroscience, 14(11), 801–809. https://doi.org/10.1038/nrn3608

Fink, S. B. (2016). A deeper look at the “neural correlate of consciousness.” In Frontiers in Psychology (Vol. 7, p. 1044). https://doi.org/10.3389/fpsyg.2016.01044

Fodor, J. A. (1983). The modularity of mind: An essay on faculty psychology. MIT Press.

Frankish, K. (2016). Illusionism as a theory of consciousness. Journal of Consciousness Studies, 23(11-12), 11–39.

Frässle, S., Sommer, J., Jansen, A., Naber, M., & Einhäuser, W. (2014). Binocular rivalry: Frontal activity relates to introspection and action but not to perception. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(5), 1738–1747. https://doi.org/10.1523/JNEUROSCI.4403-13.2014

Friston, K. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293–301. https://doi.org/10.1016/j.tics.2009.04.005

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787

Friston, K., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302. https://doi.org/10.1016/s1053-8119(03)00202-7

Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 1211–1221. https://doi.org/10.1098/rstb.2008.0300

Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., & Pezzulo, G. (2015). Active inference and epistemic value. Cognitive Neuroscience, 6(4), 187–214. https://doi.org/10.1080/17588928.2015.1020053

Hartmann, S. (1995). Models as a tool for theory construction: Some strategies of preliminary physics. In W. Herfel, W. Krajewski, I. Niiniluoto, & R. Wójcicki (Eds.), Theories and models in scientific processes (pp. 26–53). Rodopi.

Heilbron, M., & Chait, M. (2018). Great expectations: Is there evidence for predictive coding in auditory cortex? Neuroscience, 389, 54–73. https://doi.org/10.1016/j.neuroscience.2017.07.061

Hohwy, J. (2009). The neural correlates of consciousness: New experimental approaches needed? Consciousness and Cognition, 18(2), 428–438. https://doi.org/10.1016/j.concog.2009.02.006

Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.

Hohwy, J., & Seth, A. (2020). Predictive processing as a systematic basis for identifying the neural correlates of consciousness. Philosophy and the Mind Sciences, 1(II). https://doi.org/10.33735/phimisci.2020.ii.64

Illari, P. M., & Williamson, J. (2010). Function and organization: Comparing the mechanisms of protein synthesis and

natural selection. Studies in History and Philosophy of Biological and Biomedical Sciences, 41(3), 279–291. https://doi.org/10.1016/j.shpsc.2010.07.001

Issa, E. B., Cadieu, C. F., & DiCarlo, J. J. (2018). Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals. eLife, 7, e42870. https://doi.org/10.7554/eLife.42870

Jackendoff, R. (1987). Consciousness and the computational mind. MIT Press.

Kammerer, F. (2016). The hardest aspect of the illusion problem — And how to solve it. Journal of Consciousness Studies, 23(11–12), 124–139.

Kammerer, F. (2018). Can you believe it? Illusionism and the illusion meta-problem. Philosophical Psychology, 31(1), 44–67. https://doi.org/10.1080/09515089.2017.1388361

Kastner, S., De Weerd, P., Pinsk, M. A., Elizondo, M. I., Desimone, R., & Ungerleider, L. G. (2001). Modulation of sensory suppression: Implications for receptive field sizes in the human visual cortex. Journal of Neurophysiology, 86(3), 1398–1411. https://doi.org/10.1152/jn.2001.86.3.1398

Kirchhoff, M. D., & Kiverstein, J. (2018). Extended consciousness and predictive processing: A third-wave view. Routledge.

Kok, P., & Lange, F. P. de. (2014). Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex. Current Biology: CB, 24(13), 1531–1535. https://doi.org/10.1016/j.cub.2014.05.042

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93(3), 480–490. https://doi.org/10.1016/j.neuron.2016.12.041

Lamme, V. A. F. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10(11), 494–501. https://doi.org/10.1016/j.tics.2006.09.001

Lau, H. (2008). A higher order Bayesian decision theory of consciousness. In R. Banerjee & B. K. Chakrabarti (Eds.), Models of Brain and Mind: Physical, Computational, and Psychological Approaches (pp. 35–48). Elsevier.

Litwin, P., & Miłkowski, M. (2020). Unification by fiat: Arrested development of predictive processing. Cognitive Science, 44(7), e12867. https://doi.org/https://doi.org/10.1111/cogs.12867

Marchi, F., & Hohwy, J. (2020). The intermediate scope of consciousness in the predictive mind. Erkenntnis. https://doi.org/10.1007/s10670-020-00222-7

Marvan, T., & Polák, M. (2020). Generality and content-specificity in the study of the neural correlates of perceptual consciousness. Philosophy and the Mind Sciences, 1(II). https://doi.org/10.33735/phimisci.2020.II.61

McCauley, R. N., & Henrich, J. (2006). Susceptibility to the Müller-Lyer illusion, theory-neutral observation, and the diachronic penetrability of the visual input system. Philosophical Psychology, 19(1), 79–101. https://doi.org/10.1080/09515080500462347

Metzinger, T., & Wiese, W. (2017). Philosophy and predictive processing. MIND Group.

Michel, M., & Morales, J. (2020). Minority reports: Consciousness and the prefrontal cortex. Mind & Language, 35(4), 493–513. https://doi.org/https://doi.org/10.1111/mila.12264

Nes, A., & Chan, T. (2020). Inference and consciousness. London: Routledge.

Ng, A. Y., & Jordan, M. I. (2001). On discriminative vs. Generative classifiers: A comparison of logistic regression and naive bayes. 841–848. https://doi.org/10.5555/2980539.2980648

Noë, A. (2005). Action in perception. MIT Press.

Noë, A., & Thompson, E. (2004). Are there neural correlates of consciousness? Journal of Consciousness Studies, 1(11), 3–28.

Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. PLOS Computational Biology, 10(5), e1003588. https://doi.org/10.1371/journal.pcbi.1003588

Prinz, J. J. (2012). The conscious brain: How attention engenders experience. Oxford University Press.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580

Sanborn, A. N., & Chater, N. (2016). Bayesian brains without probabilities. Trends in Cognitive Sciences, 20(12), 883–893. https://doi.org/10.1016/j.tics.2016.10.003

Schlicht, T. (2018). A methodological dilemma for investigating consciousness empirically. Consciousness and Cognition, 66, 91–100. https://doi.org/10.1016/j.concog.2018.11.002

Searle, J. (1992). The rediscovery of the mind. MIT Press.

Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17(11), 565–573. https://doi.org/10.1016/j.tics.2013.09.007

Seth, A. K. (2021). Mixed feelings about a hard problem: Review of the hidden spring. https://neurobanter.com/2021/02/18/mixed-feelings-about-a-hard-%0Aproblem-review-of-the-hidden-spring

Shea, N. (2018). Representation in cognitive science. Oxford University Press.

Solms, M. (2021). The hidden spring: A journey to the source of consciousness. London, UK: Profile Books.

Spratling, M. W. (2008a). Predictive coding as a model of biased competition in visual attention. Vision Research, 48(12), 1391–1408. https://doi.org/10.1016/j.visres.2008.03.009

Spratling, M. W. (2008b). Reconciling predictive coding and biased competition models of cortical function. Frontiers in Computational Neuroscience, 2. https://doi.org/10.3389/neuro.10.004.2008

Spratling, M. W. (2017). A review of predictive coding algorithms. Brain and Cognition, 112, 92–97. https://doi.org/10.1016/j.bandc.2015.11.003

Spratling, M. W., De Meyer, K., & Kompass, R. (2009). Unsupervised learning of overlapping image components using divisive input modulation. Computational Intelligence and Neuroscience, 2009, e381457. https://doi.org/10.1155/2009/381457

Summerfield, C., & Lange, F. P. de. (2014). Expectation in perceptual decision making: Neural and computational mechanisms. Nature Reviews. Neuroscience, 15(11), 745–756. https://doi.org/10.1038/nrn3838

Suppes, P. (1962). Models of data. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and philosophy of science: Proceedings of the 1960 international congress (pp. 252–261). Stanford University Press.

Tononi, G. (2008). Consciousness as integrated information: A provisional manifesto. The Biological Bulletin, 215(3), 216–242. https://doi.org/10.2307/25470707

Tononi, G., Boly, M., Gosseries, O., & Laureys, S. (2016). The neurology of consciousness. In G. Tononi, M. Boly, O. Gosseries, & S. Laureys (Eds.), The neurology of conciousness (pp. 407–461).

Tononi, G., & Koch, C. (2008). The neural correlates of consciousness: An update. Annals of the New York Academy of Sciences, 1124, 239–261. https://doi.org/10.1196/annals.1440.004

Tononi, G., & Koch, C. (2015). Consciousness: Here, there and everywhere? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1668). https://doi.org/10.1098/rstb.2014.0167

Tsuchiya, N., Wilke, M., Frässle, S., & Lamme, V. A. F. (2015). No-report paradigms: Extracting the true neural correlates of consciousness. Trends in Cognitive Sciences, 19(12), 757–770. https://doi.org/10.1016/j.tics.2015.10.002

Zhang, N. R., & Heydt, R. von der. (2010). Analysis of the context integration mechanisms underlying figure-ground

organization in the visual cortex. Journal of Neuroscience, 30(19), 6482–6496. https://doi.org/10.1523/jneurosci.5168-09.2010

Zhou, H., Friedman, H. S., & Heydt, R. von der. (2000). Coding of border ownership in monkey visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(17), 6594–6611.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Tobias Schlicht, Krzysztof Dolega