Newly sighted perceivers and the relation between sight and touch
PDF
HTML

Keywords

Cross-modal perception
Molyneux's question
Perceptual experience
Shape perception
Spatial perception

How to Cite

Newly sighted perceivers and the relation between sight and touch. (2024). Philosophy and the Mind Sciences, 5. https://doi.org/10.33735/phimisci.2024.11582

Abstract

Molyneux’s question asks whether a person born blind who has learned to identify shapes by touch could, if suddenly granted sight, immediately identify shapes visually. This question has often been used to structure discussions of whether there is a “rational connection” between sight and touch—whether it is possible to rationally doubt whether the same shape properties are both seen and felt. I distinguish two questions under this general heading. The first concerns, roughly, whether the visual and haptic perception of shape is rationally connected in normally sighted perceivers. The second concerns, roughly, whether the visual and haptic perception of shape is rationally connected in all possible perceivers. I argue that real-world implementations of Molyneux’s question are irrelevant to the first question, but potentially relevant to the second. However, I also argue that the second question does not have the philosophical significance it is sometimes claimed to have. In particular, it cannot be used to adjudicate debates about whether the phenomenal character of perceptual experience is primarily determined “externally” by the worldly properties we perceive, or “internally” by physiological or functional properties of our brains.

PDF
HTML

References

Alary, F., Duquette, M., Goldstein, R., Chapman, C. E., Voss, P., Buissonnière-Ariza, V., & Lepore, F. (2009). Tactile acuity in the blind: A closer look reveals superiority over the sighted in some but not all cutaneous tasks. Neuropsychologia, 47(10), 2037–2043. https://doi.org/10.1016/j.neuropsychologia.2009.03.014

Alary, F., Goldstein, R., Duquette, M., Chapman, C. E., Voss, P., & Lepore, F. (2008). Tactile acuity in the blind: A psychophysical study using a two-dimensional angle discrimination task. Experimental Brain Research, 187, 587–594. https://doi.org/10.1007/s00221-008-1327-7

Amedi, A., Malach, R., Hendler, T., Peled, S., & Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway. Nature Neuroscience, 4(3), 324–330. https://doi.org/10.1038/85201

Amedi, A., Raz, N., Azulay, H., Malach, R., & Zohary, E. (2010). Cortical activity during tactile exploration of objects in blind and sighted humans. Restorative Neurology and Neuroscience, 28(2), 143–156. https://doi.org/10.3233/RNN-2010-0503

Arguin, M., & Saumier, D. (2004). Independent processing of parts and of their spatial organization in complex visual objects. Psychological Science, 15(9), 629–633. https://doi.org/10.1111/j.0956-7976.2004.00731.x

Baker, N., & Elder, J. H. (2022). Deep learning models fail to capture the configural nature of human shape perception. iScience, 104913. https://doi.org/10.1016/j.isci.2022.104913

Baker, N., Garrigan, P., & Kellman, P. J. (2021). Constant curvature segments as building blocks of 2D shape representation. Journal of Experimental Psychology: General, 150(8), 1556–1580. https://doi.org/10.1037/xge0001007

Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J. (2018). Deep convolutional networks do not classify based on global object shape. PLoS Computational Biology, 14(12), 1006613. https://doi.org/10.1371/journal.pcbi.1006613

Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J. (2020). Local features and global shape information in object classification by deep convolutional neural networks. Vision Research, 172, 46–61. https://doi.org/10.1016/j.visres.2020.04.003

Beck, O. (2019). Rethinking naive realism. Philosophical Studies, 176, 607–633. https://doi.org/10.1007/s11098-018-1030-x

Behrmann, M., Peterson, M. A., Moscovitch, M., & Suzuki, S. (2006). Independent representation of parts and the relations between them: Evidence from integrative agnosia. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1169–1184. https://doi.org/10.1037/0096-1523.32.5.1169

Berkeley, G. (1965). An essay towards a new theory of vision (1709). In D. M. Armstrong (Ed.), Berkeley’s Philosophical Writings (pp. 274–352). Collier Books.

Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115–117. https://doi.org/10.1037/0033-295X.94.2.115

Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance, 19(6), 1162–1182. https://doi.org/10.1037//0096-1523.19.6.1162

Block, N. (1996). Mental paint and mental latex. Philosophical Issues, 7, 19–49. https://doi.org/10.2307/1522889

Block, N. (2023). The border between seeing and thinking. Oxford University Press.

Blum, H. (1973). Biological shape and visual science Part I. Journal of Theoretical Biology, 38(2), 205–287. https://doi.org/10.1016/0022-5193(73)90175-6

Bowers, J. S., Malhotra, G., Dujmović, M., Montero, M. L., Tsvetkov, C., Biscione, V., & Blything, R. (2023). Deep problems with neural network models of human vision. Behavioral and Brain Sciences, 46, 385. https://doi.org/10.1017/S0140525X22002813

Brewer, B. (2011). Perception and its objects. Oxford University Press.

Bruno, M., & Mandelbaum, E. (2010). Locke’s answer to Molyneux’s thought experiment. History of Philosophy Quarterly, 27(2), 165–180. http://www.jstor.org/stable/27809501

Byrne, A. (2001). Intentionalism defended. The Philosophical Review, 110(2), 199–240. https://doi.org/10.2307/2693675

Byrne, A., & Green, E. J. (2023). Whither naıv̈e realism? – I. Philosophical Perspectives, 37(1), 49–68. https://doi.org/10.1111/phpe.12180

Cacciamani, L., Ayars, A. A., & Peterson, M. A. (2014). Spatially rearranged object parts can facilitate perception of intact whole objects. Frontiers in Psychology, 5, 1–11. https://doi.org/10.3389/fpsyg.2014.00482

Campbell, J. (1996). Molyneux’s question. Philosophical Issues, 7, 301–318. https://doi.org/10.2307/1522914

Campbell, J. (2005). Information processing, phenomenal consciousness, and Molyneux’s question. In J. L. Bermúdez (Ed.), Thought, Reference, and Experience: Themes from the Philosophy of Gareth Evans (pp. 195–219). Oxford University Press.

Carey, S. (2009). The origin of concepts. Oxford University Press.

Chaisilprungraung, T., German, J., & McCloskey, M. (2019). How are object shape axes defined? Evidence from mirror-image confusions. Journal of Experimental Psychology: Human Perception and Performance, 45(1), 111–124. https://doi.org/10.1037/xhp0000592

Cheng, T. (2015). Obstacles to testing Molyneux’s question empirically. I-Perception, 6(4), 1–5. https://doi.org/10.1177/2041669515599330

Cheng, T., Wu, E. D., Cheng, X., Zhu, L. H., Li, X., Thom, F., & Qu, J. (2016). Rapid integration of tactile and visual information by a newly sighted child. Current Biology, 26(8), 1069–1074. https://doi.org/10.1016/j.cub.2016.02.065

Cheselden, W. (1728). An account of some observations made by a young gentleman, who was born blind, or lost his sight so early, that he had no remembrance of ever having seen, and was couch’d between 13 and 14 years of age. Philosophical Transactions of the Royal Society of London, 35(402), 447–450. https://doi.org/10.1098/rstl.1727.0038

Connolly, K. (2013). How to test Molyneux’s question empirically. I-Perception, 4(8), 508–510. https://doi.org/10.1068/i0623jc

Copenhaver, R. (2014). Berkeley on the language of nature and the objects of vision. Res Philosophica, 91(1), 29–46. https://doi.org/10.11612/resphil.2014.91.1.2

Degenaar, M. (1996). Molyneux’s problem: Three centuries of discussion on the perception of forms. Kluwer.

Desmarais, G., Meade, M., Wells, T., & Nadeau, M. (2017). Visuo-haptic integration in object identification using novel objects. Attention, Perception, & Psychophysics, 79, 2478–2498. https://doi.org/10.3758/s13414-017-1382-x

Di Stefano, N., & Spence, C. (2023). Perceptual similarity: Insights from crossmodal correspondences. Review of Philosophy and Psychology. https://doi.org/10.1007/s13164-023-00692-y

Dretske, F. I. (1995). Naturalizing the mind. MIT Press.

Drewes, J., Goren, G., Zhu, W., & Elder, J. H. (2016). Recurrent processing in the formation of shape percepts. Journal of Neuroscience, 36(1), 185–192. https://doi.org/10.1523/JNEUROSCI.2347-15.2016

Elder, J. H. (2018). Shape from contour: Computation and representation. Annual Review of Vision Science, 4, 423–450. https://doi.org/10.1146/annurev-vision-091517-034110

Erdogan, G., Chen, Q., Garcea, F. E., Mahon, B. Z., & Jacobs, R. A. (2016). Multisensory part-based representations of objects in human lateral occipital cortex. Journal of Cognitive Neuroscience, 28(6), 869–881. https://doi.org/10.1162/jocn_a_00937

Erdogan, G., & Jacobs, R. A. (2017). Visual shape perception as Bayesian inference of 3D object-centered shape representations. Psychological Review, 124(6), 740–761. https://doi.org/10.1037/rev0000086

Erdogan, G., Yildirim, I., & Jacobs, R. A. (2015). From sensory signals to modality-independent conceptual representations: A probabilistic language of thought approach. PLoS Computational Biology, 11(11), 1004610. https://doi.org/10.1371/journal.pcbi.1004610

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433. https://doi.org/10.1038/415429a

Evans, G. (1985). Molyneux’s question. In A. Phillips (Ed.), Gareth Evans: Collected Papers (Reprinted in A. Noë & E. Thompson. Vision and Mind (2002), pp. 319–349). Clarendon Press.

Feldman, J., & Singh, M. (2006). Bayesian estimation of the shape skeleton. Proceedings of the National Academy of Sciences, 103(47), 18014–18019. https://doi.org/10.1073/pnas.0608811103

Fine, I., Wade, A. R., Brewer, A. A., May, M. G., Goodman, D. F., Boynton, G. M., Wandell, B. A., & MacLeod, D. I. (2003). Long-term deprivation affects visual perception and cortex. Nature Neuroscience, 6(9), 915–916. https://doi.org/10.1038/nn1102

Fish, W. (2009). Perception, hallucination, and illusion. Oxford University Press.

French, C., & Phillips, I. (2020). Austerity and illusion. Philosophers’ Imprint, 20, 1–19. https://doi.org/http://hdl.handle.net/2027/spo.3521354.0020.015

Gallagher, S. (2005). How the body shapes the mind. Oxford University Press.

Glenney, B. R. (2013). Philosophical problems, cluster concepts, and the many lives of Molyneux’s question. Biology & Philosophy, 28, 541–558. https://doi.org/10.1007/s10539-012-9355-x

Gori, M. (2015). Multisensory integration and calibration in children and adults with and without sensory and motor disabilities. Multisensory Research, 28(1-2), 71–99. https://doi.org/10.1163/22134808-00002478

Gori, M., Del Viva, M., Sandini, G., & Burr, D. C. (2008). Young children do not integrate visual and haptic form information. Current Biology, 18(9), 694–698. https://doi.org/10.1016/j.cub.2008.04.036

Gori, M., Giuliana, L., Sandini, G., & Burr, D. (2012). Visual size perception and haptic calibration during development. Developmental Science, 15(6), 854–862. https://doi.org/10.1111/j.1467-7687.2012.01183.x

Gori, M., Sandini, G., Martinoli, C., & Burr, D. (2010). Poor haptic orientation discrimination in nonsighted children may reflect disruption of cross-sensory calibration. Current Biology, 20(3), 223–225. https://doi.org/10.1016/j.cub.2009.11.069

Green, E. J. (2019). On the perception of structure. Noûs, 53(3), 564–592. https://doi.org/10.1111/nous.12207

Green, E. J. (2022a). Representing shape in sight and touch. Mind & Language, 37(4), 694–714. https://doi.org/10.1111/mila.12352

Green, E. J. (2022b). The puzzle of cross‐modal shape experience. Noûs, 56(4), 867–896. https://doi.org/10.1111/nous.12384

Green, E. J. (2023). A pluralist perspective on shape constancy. The British Journal for the Philosophy of Science. https://doi.org/10.1086/727427

Gregory, R. L., & Wallace, J. G. (1963). Recovery from early blindness: A case study. Experimental Psychology Society Monograph, 2, 65–129.

Hafri, A., Green, E. J., & Firestone, C. (2023). Compositionality in visual perception. Behavioral and Brain Sciences, 46, e277. https://doi.org/10.1017/S0140525X23001838

Heck, R. (2000). Nonconceptual content and the “space of reasons.” The Philosophical Review, 109(4), 483–523. https://doi.org/10.2307/2693622

Held, R., Ostrovsky, Y., Gelder, B., Gandhi, T., Ganesh, S., Mathur, U., & Sinha, P. (2011). The newly sighted fail to match seen with felt. Nature Neuroscience, 14(5), 551–553. https://doi.org/10.1038/nn.2795

Hopkins, R. (2005). Molyneux’s question. Canadian Journal of Philosophy, 35(3), 441–464. https://doi.org/10.1080/00455091.2005.10716598

Huber, E., Webster, J. M., Brewer, A. A., MacLeod, D. I., Wandell, B. A., Boynton, G. M., Wade, A. R., & Fine, I. (2015). A lack of experience-dependent plasticity after more than a decade of recovered sight. Psychological Science, 26(4), 393–401. https://doi.org/10.1177/0956797614563957

Hummel, J. E. (2000). Where view-based theories break down: The role of structure in shape perception and object recog- nition. In E. Dietrich & A. Markman (Eds.), Cognitive Dynamics: Conceptual Change in Humans and Machines (pp. 157–185). Lawrence Erlbaum.

Hummel, J. E. (2013). Object recognition. In D. Reisburg (Ed.), Oxford Handbook of Cognitive Psychology (pp. 32–46). Oxford University Press.

Humphreys, G. W., & Quinlan, P. T. (1988). Priming effects between two-dimensional shapes. Journal of Experimental Psychology: Human Perception and Performance, 14(2), 203–220. https://doi.org/10.1037/0096-1523.14.2.203

James, T. W., Humphrey, G. K., Gati, J. S., Menon, R. S., & Goodale, M. A. (2002). Differential effects of viewpoint on object- driven activation in dorsal and ventral streams. Neuron, 35(4), 793–801. https://doi.org/10.1016/S0896-6273(02)00803-6

Kalenine, S., Pinet, L., & Gentaz, E. (2011). The visual and visuo-haptic exploration of geometrical shapes increases their recognition in preschoolers. International Journal of Behavioral Development, 35(1), 18–26. https://doi.org/10.1177/0165025410367443

Kellman, P. J., & Fuchser, V. (2023). Visual completion and intermediate representations in object formation. In A. Mroczko-Wasowicz & R. Grush (Eds.), Sensory Individuals: Unimodal and Multimodal Perspectives (pp. 55–76). Oxford University Press.

Kellman, P. J., Guttman, S. E., & Wickens, T. D. (2001). Geometric and neural models of object perception. In T. F. Shipley & P. J. Kellman (Eds.), From Fragments to Objects: Segmentation and Grouping in Vision (pp. 183–246). Elsevier.

Koffka, K. (1935). Principles of gestalt psychology. Harcourt, Brace.

Lacey, S., Hall, J., & Sathian, K. (2010). Are surface properties integrated into visuohaptic object representations? European Journal of Neuroscience, 31(10), 1882–1888. https://doi.org/10.1111/j.1460-9568.2010.07204.x

Lacey, S., Peters, A., & Sathian, K. (2007). Cross-modal object recognition is viewpoint-independent. PLoS One, 2(9), 890. https://doi.org/10.1371/journal.pone.0000890

Lacey, S., & Sathian, K. (2014). Visuo-haptic multisensory object recognition, categorization, and representation. Frontiers in Psychology, 5, 730. https://doi.org/10.3389/fpsyg.2014.00730

Lande, K. J. (2024). Compositionality in perception: A framework. WIREs Cognitive Science. https://doi.org/10.1002/wcs.1691

Lawson, R. (2009). A comparison of the effects of depth rotation on visual and haptic three-dimensional object recognition. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 911–930. https://doi.org/10.1037/a0015025

Leek, E. C., Reppa, I., Rodriguez, E., & Arguin, M. (2009). Surface but not volumetric part structure mediates three-dimensional shape representation: Evidence from part–whole priming. Quarterly Journal of Experimental Psychology, 62(4), 814–830. https://doi.org/10.1080/17470210802303826

Lescroart, M. D., & Biederman, I. (2013). Cortical representation of medial axis structure. Cerebral Cortex, 23(3), 629–637. https://doi.org/10.1093/cercor/bhs046

Levin, J. (2008). Molyneux’s question and the individuation of perceptual concepts. Philosophical Studies, 139(1), 1–28. https://doi.org/10.1007/s11098-007-9072-5

Levin, J. (2018). Molyneux’s question and the amodality of spatial experience. Inquiry, 61(5-6), 590–610. https://doi.org/10.1080/0020174X.2017.1372306

Locke, J. (1979). An essay concerning human understanding (1694) (P. H. Nidditch, Ed.). Oxford University Press.

Logue, H. (2012). Why naive realism? Proceedings of the Aristotelian Society, 112, 211–237. https://doi.org/10.1111/j.1467-9264.2012.00332.x

Lopes, D. M. M. (2000). What is it like to see with your ears? The representational theory of mind. Philosophy and Phenomenological Research, 60(2), 439–453. https://doi.org/10.2307/2653494

Ma, W. Y., & Manjunath, B. S. (1999). Netra: A toolbox for navigating large image databases. Multimedia Systems, 7, 184–198. https://doi.org/10.1007/s005300050121

Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London, B: Biological Sciences, 200, 269–294. https://doi.org/10.1098/rspb.1978.0020

Martin, M. G. F. (1998). Setting things before the mind. In A. O’Hear (Ed.), Current Issues in Philosophy of Mind (pp. 157–169). Cambridge University Press.

Martin, M. G. F. (2004). The limits of self-awareness. Philosophical Studies, 120, 37–89. https://www.jstor.org/stable/4321508

Masson, H. L., Bulthé, J., Beeck, H. P., & Wallraven, C. (2016). Visual and haptic shape processing in the human brain: Unisensory processing, multisensory convergence, and top-down influences. Cerebral Cortex, 26(8), 3402–3412. https://doi.org/10.1093/cercor/bhv170

Mathes, B., & Fahle, M. (2007). Closure facilitates contour integration. Vision Research, 47(6), 818–827. https://doi.org/10.1016/j.visres.2006.11.014

Matthen, M., & Cohen, J. (2020). Many Molyneux questions. Australasian Journal of Philosophy, 98(1), 47–63. https://doi.org/10.1080/00048402.2019.1603246

May, E., Arach, P., Kishiki, E., Geneau, R., Maehara, G., Sukhai, M., & Hamm, L. M. (2022). Learning to see after early and extended blindness: A scoping review. Frontiers in Psychology, 13, 954328. https://doi.org/10.3389/fpsyg.2022.954328

McKyton, A., Ben-Zion, I., Doron, R., & Zohary, E. (2015). The limits of shape recognition following late emergence from blindness. Current Biology, 25(18), 2373–2378. https://doi.org/10.1016/j.cub.2015.06.040

Nardini, R. ;. M., M; Bedford. (2010). Fusion of visual cues is not mandatory in children. Proceedings of the National Academy of Sciences, 107(39), 17041–17046. https://doi.org/10.1073/pnas.1001699107

Newell, F. N., Ernst, M. O., Tjan, B. S., & Bülthoff, H. H. (2001). Viewpoint dependence in visual and haptic object recognition. Psychological Science, 12(1), 37–42. https://doi.org/10.1111/1467-9280.00307

Noppeney, U., Friston, K. J., Ashburner, J., Frackowiak, R., & Price, C. J. (2005). Early visual deprivation induces structural plasticity in gray and white matter. Current Biology, 15(13), 488–490. https://doi.org/10.1016/j.cub.2005.06.053

Norman, J. F., Norman, H. F., Clayton, A. M., Lianekhammy, J., & Zielke, G. (2004). The visual and haptic perception of natural object shape. Perception & Psychophysics, 66(2), 342–351. https://doi.org/10.3758/BF03194883

O’Callaghan, C. (2019). A multisensory philosophy of perception. Oxford University Press.

O’Dea, J. W. (2006). Representationalism, supervenience, and the cross-modal problem. Philosophical Studies, 130(2), 285–295. https://doi.org/10.1007/s11098-004-4514-9

Orlov, T., Raveh, M., McKyton, A., Ben-Zion, I., & Zohary, E. (2021). Learning to perceive shape from temporal integration following late emergence from blindness. Current Biology, 31(14), 3162–3167. https://doi.org/10.1016/j.cub.2021.04.059

Ostrovsky, Y., Meyers, E., Ganesh, S., Mathur, U., & Sinha, P. (2009). Visual parsing after recovery from blindness. Psychological Science, 20(12), 1484–1491. https://doi.org/10.1111/j.1467-9280.2009.02471.x

Park, C., & Kim, S. (2014). Haptic perception accuracy depending on self-produced movement. Journal of Sports Sciences, 32(10), 974–985. https://doi.org/10.1080/02640414.2013.873138

Pautz, A. (2021). Perception. Routledge.

Peissig, J. J., & Tarr, M. J. (2007). Visual object recognition: Do we know more now than we did 20 years ago? Annual Review of Psychology, 58, 75–96. https://doi.org/10.1146/annurev.psych.58.102904.190114

Poggio, T., & Edelman, S. (1990). A network that learns to recognize three-dimensional objects. Nature, 343(6255), 263–266. https://doi.org/10.1038/343263a0

Postma, A., Zuidhoek, S., Noordzij, M. L., & Kappers, A. M. (2008). Haptic orientation perception benefits from visual experience: Evidence from early-blind, late-blind, and sighted people. Perception & Psychophysics, 70(7), 1197–1206. https://doi.org/10.3758/PP.70.7.1197

Prinz, J. (2002). Furnishing the mind: Concepts and their perceptual basis. MIT Press.

Putzar, L., Hötting, K., Rösler, F., & Röder, B. (2007). The development of visual feature binding processes after visual deprivation in early infancy. Vision Research, 47(20), 2616–2626. https://doi.org/10.1016/j.visres.2007.07.002

Quilty‐Dunn, J. (2020). Perceptual pluralism. Noûs, 54(4), 807–838. https://doi.org/10.1111/nous.12285

Quinlan, P. T., & Humphreys, G. W. (1993). Perceptual frames of reference and two-dimensional shape recognition: Further examination of internal axes. Perception, 22(11), 1343–1364. https://doi.org/10.1068/p221343

Reid, T. (1764). An inquiry into the human mind. Edinburgh University Press.

Sacks, O. (1995). An anthropologist on mars. Vintage Books.

Sann, C., & Streri, A. (2007). Perception of object shape and texture in human newborns: Evidence from cross‐modal transfer tasks. Developmental Science, 10(3), 399–410. https://doi.org/10.1111/j.1467-7687.2007.00593.x

Schellenberg, S. (2018). The unity of perception: Content, consciousness, evidence. Oxford University Press.

Schwenkler, J. (2012). On the matching of seen and felt shape by newly sighted subjects. I-Perception, 3(3), 186–188. https://doi.org/10.1068/i0525ic

Schwenkler, J. (2013). Do things look the way they feel? Analysis, 73(1), 86–96. https://doi.org/10.1093/analys/ans137

Schwenkler, J. (2019). Molyneux’s question within and across the senses. In T. Cheng, O. Deroy, & C. Spence (Eds.), Spatial Senses: Philosophy of Perception in an Age of Science. Routledge.

Sethi, U. (in press). A (qualified) defense of diaphaneity. In O. Beck & F. Masrour (Eds.), The Relational View of Perception: New Essays. Routledge.

Sourav, S., Bottari, D., Kekunnaya, R., & Roder, B. (2018). Evidence of a retinotopic organization of early visual cortex but impaired extrastriate processing in sight recovery individuals. Journal of Vision, 18(3), 22. https://doi.org/10.1167/18.3.22

Spelke, E. (2022). What babies know. Oxford University Press.

Spence, C., & Di Stefano, N. (2024). What, if anything, can be considered an amodal sensory dimension? Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-023-02447-3

Streri, A., & Gentaz, E. (2003). Cross-modal recognition of shape from hand to eyes in human newborns. Somatosensory & Motor Research, 20(1), 13–18. https://doi.org/10.1080/0899022031000083799

Tarr, M. J., & Pinker, S. (1990). When does human object recognition use a viewer-centered reference frame? Psychological Science, 1(4), 253–256. https://doi.org/10.1111/j.1467-9280.1990.tb00209.x

Theurel, A., Frileux, S., Hatwell, Y., & Gentaz, E. (2012). The haptic recognition of geometrical shapes in congenitally blind and blindfolded adolescents: Is there a haptic prototype effect? PloS One, 7(6), 40251. https://doi.org/10.1371/journal.pone.0040251

Thompson, B. (2010). The spatial content of experience. Philosophy and Phenomenological Research, 81(1), 146–184. https://www.jstor.org/stable/20779553

Tye, M. (1997). Ten problems of consciousness: A representational theory of the phenomenal mind. MIT Press.

Tye, M. (2000). Consciousness, color, and content. MIT Press.

Ueda, Y., & Saiki, J. (2012). Characteristics of eye movements in 3-D object learning: Comparison between within-modal and cross-modal object recognition. Perception, 41(11), 1289–1298. https://doi.org/10.1068/p7257

Ullman, S., & Basri, R. (1991). Recognition by linear combinations of models. IEEE Transactions on Pattern Analysis & Machine Intelligence, 13, 992–1006. https://doi.org/10.1109/34.99234

van Cleve, J. (2007). Reid’s answer to Molyneux’s question. The Monist, 90(2), 251–270. https://www.jstor.org/stable/27904030

Wagner, M. (2006). The geometries of visual space. Lawrence Erlbaum.

Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26(6), 1003–1017. https://doi.org/10.1152/jn.1963.26.6.1003

Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72(8), 2031–2046. https://doi.org/10.3758/BF03196680

Yildirim, I., & Jacobs, R. A. (2013). Transfer of object category knowledge across visual and haptic modalities: Experimental and computational studies. Cognition, 126(2), 135–148. https://doi.org/10.1016/j.cognition.2012.08.005

Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19. https://doi.org/10.1016/j.patcog.2003.07.008

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 E. J. Green