
Spectral analysis of
ZUC-256

• The algorithm of ZUC-256
• Attack approaches
• Spectral analysis tools

Fast Software Encryption 2020, November 9-13

5G future is here!

Alexander Maximov Ericsson Research, Lund, Sweden

Jing Yang and Thomas Johansson Lund University, Lund, Sweden

Introduction of ZUC-128/256 ●Domestic cipher used in China

●32-bit oriented stream cipher

●FSM over GF(232)

●LFSR over prime modulo p=231-1

●BR layer

●[2011] 3GPP standard UEA3/UIA3 with
128-bit key

●[2018] ZUC-256 was proposed as a
256-bit key version for 5G air encryption

●Eurocrypt 2018 Rump session

●ZUC-256 Workshop

●No attack faster than 2256 found (until now)

●We propose an academic attack 220 faster
than exhaustive key search

Linear approximation: Zp2xGF(216)

●Example: for

●Start from the LFSR and BR layer

●Approximate as 2xGF(216)

Linear approximation: Deriving biased samples

●Two consecutive keystream words

●New idea: Include LFSR cancellation into the full noise
expression, thus making the bias larger

●σ – swap of high and low 16 bits

●M – 32x32 Boolean matrix that the attacker can choose

Academic distinguishing attack: Results
●Sampling

●Total noise expression (details on N1 and N2 will be given later)

●Found matrix M

●Bias of the total noise (Squared Euclidean Imbalance, SEI)

●Distinguishing attack complexity is O(1/ε) = O(2236)

●in the degree is ~2167

●Problem 1:

●Computation of 32-bit
noise distributions
(adapted “bit-slicing”
technique)

●Problem 2:

●Searching for the 32x32
binary masking matrix M
(spectral analysis)

Noise expressions and “Bit-slicing” technique

●Problem:

●32-bit noise variables

●Just computing Dist(N1a) would
require a loop of size 93 * 217*32 !

●Solution:

●Compute with adapted “Bit-slicing”
technique in time ~O(247).

Problem 2: Searching for the linear masking matrix M

●Recall the total noise expression:

●Assume we have computed the distributions of 32-bit noise variables N1 and N2.

●Problem: How to find a good 32x32 binary matrix M and to maximize the total bias?

●Solution: Spectral analysis techniques (next slides)

Spectral tools: Introduction
●n-bit variables, size of the alphabet

●t- random variables (noise variables)

●For a random variable X, individual values are

●WHT and DFT

●What can we do in frequency domain for cryptanalysis?

●Bias computation and precision problem

●Convolutions of noise distributions

●Search for a linear masking (e.g. nxn binary matrix M)

●Approximation of S-Boxes

●…etc

●Theorem 1: bias computation in the frequency domain

Spectral tools: Bias computation and precision problem
●Bias = Squared Euclidean Imbalance (f = normalization

factor)

●A distinguisher needs samples

Consequences

●In the frequency domain only low precision is needed,
but with the exponent field

●Data type double in standard C is good enough
(exponent value up to 2-1023)

●Works even if the initial distribution of X is not
normalized (then f is used)

●Problem: if expected bias is ~2-p then in
time domain the values must have precision
at least O(|p/2|) bits!

●Example: for an expected bias 2-512 we must
handle large number arithmetic and have
precision >256 bits.

Spectral tools: Convolutions
●From e.g. [MJ05]

Observation & Motivation

●Peak spectrum values contribute the most to the
total bias

●Motivates to learn how to “shuffle” spectrums by
some manipulations in the time domain.

●Consequence: the bias of a convolution

Spectral tools: Linear masking (WHT case)
●

●Theorem 2:

●Algorithm 1: (solution to find M-matrices above)

●Place wanted n indexes as rows of the
matrix (must be full rank)

●For each find n spectral indexes with peak spectral
values (sorted descending order). Place
those indexes as rows of (must be full rank)

●Derive

Spectral tools: Linear masking (DFT case)
●

●Theorem 6:

●Algorithm 3: (solution to find c-constants above)

●Locate the “group” m where the maximum peak value is
happening over the product of group-max values for all Xs

●Set such that it “rotates” the corresponding spectrum
within the group m

●Best alignment happens at the point 2m

●Cor. 2&3:

Spectral tools: Approximation of S-Boxes (Intro)
●Examples for composite S-Box constructions:

●Example of an approximation:

●Questions:

●How to find M such that the bias of X is large?

●How to derive the spectrum value of X at index k?

Spectral tools: Usual S-Boxes
●

●Theorem 3:

●Algorithm 2: (Find a good masking matrix M)

●for each k>0 compute WHT:

●loop for λ-index over the k-th spectrum above

●collect many enough triples

●from the triples construct full-rank
matrices with greedy approach

●derive

Spectral tools: Composite S-Boxes

●Usage example:

●for all basic S-Boxes (8-bit S0/S1 in ZUC) precompute tables like

●then any spectrum values of a large composite S-Box can be derived
through these tables:

●Theorem 5:

Spectral analysis of ZUC – the final step!
●Recall the total noise expression:

●For any point k, the spectral expression for the total noise:

●Spectral analysis of ZUC: our strategy for the final step to find M

●we selected ~224.78 “promising” λ-points where

●we selected ~218 “promising” k-points where

●for each pair (k, λ) we compute the spectrum value, then collect best pairs (k, λ)

●construct matrices and derive

Bit-slicing technique: Basics

●Consider a 32-bit “toy” noise expression N
(we use the same techniques to compute
N1a, N1b, N2).

●N1a, N1b, N2 are 32-bit noise variables:

●have 32-bit operators

●2x16-bit operators

●the carry random variables C = {0, -1, +1}.

●Tablek(c1, c2…) = number of combinations of k-bit truncated input variables (X1, X2…) such that the
result is a wanted k-bit truncated result R and the output sub-carries are c1 and c2.

●Given Tablek(c1, c2…) and rk it is easy to compute Tablek+1(c1, c2…)

●Transition from k’th table to (k+1)’th is a linear operation => transition matrices Mx, where x=rk.

●Tablek(c1, c2…)  vector Vk of length t.

Bit-slicing technique: Basics

●General formulae:

●Precomputation of high and low parts.

●Two transition matrices can be precomputed:

Bit-slicing technique: Adaptation

●C0 and C16 are independent variables
in range {0, -1, +1} with certain
probabilities.

●Table’s entries are #of combinations
* Pr{C0, C16}

●Special transition matrices for bits 0,
15, 16

●Transition matrices are of size
212.8x212.8 (365Mb of RAM each)

●L/H vectors:

●truncated lengths t=28.

●precomputation time O(246.6)

