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IntrOduct|On Of ZUC—128/256  Domestic cipher used in China —
» 32-bit oriented stream cipher
[ mod (231-1)
* FSM over GF(232)
é é é  LFSR over prime modulo p=231-1
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¥ ;  We propose an academic attack 22° faster
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than exhaustive key search



Linear approximation: Z,—>2xGF(21°) z
mod (281
» Start from the LFSR and BR layer ) ‘
() 4 slt2) — 5(ta) 4 5(fa)  mod p (1) é é é@
- Approximate as 2xGF(21¢) bl ol it o B Bl il B el el S A Bl
X)) @y, xE) = x ) @, X @, ¢t % Lﬁ Ej -
(V) > 1 >z
« Example: for X () = x1(t:) A %
A TR e
5g1+9) s%ﬁg) s§§3+93 sg4+9) Clgl) v v
Sgﬁll) Fie S(;2+11) = Sgs+11) Bi6 S(;4+11) Bie Clgl) [‘;‘ Tz(v}
A ~ e > ~ = s ~ ! ——— < e ‘ <<< 16 ‘
bals il X1(t2) X1(t3) X1(ta) C1(t1) iﬁl T2¢

Pr{c® = 0} = Pr{c®) = 0} ~ 2/3
Pr{c{") = -1} = Pr{c{{) = 1} ~ 1/6
pr,«{cgl) — il = P'I"{C_S-l) =+1}~1/6




Linear approximation: Deriving biased samples

X(tl) Mg X(tQ) — X(ts) M6 X(t4) 16 C(tl) mod (2%'-1)
» Two consecutive keystream words f%s,f%sm I C:% T TeTe e ? TeTs e
Z® = [(T2®) ¢ X208 (T1® B X1®) @ X0®)] @ X3® \ | j/ E
Z+D) = [SLy(T2'W) B (SL1(T1T®) @ X0t+D)] @ X 3¢+1) e L ] *
ot . D> 2
* New idea: Include LFSR cancellation into the full noise SR (e e
expression, thus making the bias larger k2 ¥
mE) <
MJ[Z(tl) ® Zt) g z(ts) g Z(t‘l)] o) [Z(tﬁ‘l) @ Z(2t1) g Z(ts+1) 5 Z(t4+1)] | Uk _ 2] ‘
_ (t1) (t1) T T2
= MaN1® @ N2 s e
s P [M T1® @ SL(T1D) @ M -T2® @ SLz(T2’(t))]
teE{t1,..., tg}

» 0 — swap of high and low 16 bits
« M —32x32 Boolean matrix that the attacker can choose
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Academic distinguishing attack: Results

» Sampling

Mo[Z®) @ 22 g 7() g 7)) @ [Z(+D) g Z(2+D) g ZlstD) g Zltat) * Problem 1:

» Computation of 32-bit
noise distributions
(adapted “bit-slicing”
technique)

* Problem 2:
* Searching for the 32x32

» Total noise expression (details on N1 and N2 will be given later)
= MoN1t) g N2
o D
tE{tl, ;- }

* Found matrix M
uint32_t M[32] =

{ 0x26dad00b,

0xbde94454, 0x3bdfdb0d, 0x1423c42f, O0xc4f35585, 0x1£22e¢504,

0xebO7ccle,
0x67d4efba,
0x7fb935a8,
0x08d2662¢,

0x3633b301,
0xdd0830b6,
0x4d923b96,
Oxccc8fe9c,

0Ox11b4dbca3,
0xee579099,
0xc0c9967e,
0x994d8fb8,

0x6£23b103,
0x9%af30192,
0x99db94fc,
Oxfbad4fOdc,

0x912adb7d,
0x455d8aT7b,
0x442f1154,
0x462d2a69,

0x6a058e9e,
0x22133144,
0x17994elf,
0x373306ed,,

binary masking matrix M
(spectral analysis)

0x91282e11, 0x9b82d788 };

* Bias of the total noise (Squared Euclidean Imbalance, SEI)
(Nt(t;)) ~ 9—236.380623

« Distinguishing attack complexity is O(1/¢g) = 0(223¢)
e in s(t1) 4 g(t2) = glts) 4 g(ta) mod p the degreeis ~2167



Noise expressions and “Bit-slicing” technique

-
—
x (t1) Fie x(t2) — x(ts) M6 x (ta) =i C(t)
* Problem:
N1a®) = [(T2®) @ X2t)) B (T1¢) EXl(“)) @ X0(1)))] >-bit noi bl
@ [(T2%) @ X20)) @ (T1¢) 5 X1(ts )@Xo(ts)))] * Just computing Dist(N1a) would
& (T2 & (X200 By X202 Bys X2 By C200)) @ ((T1() require a loop of size 93 * 217°32|
B (X1®%) B4 X102) Hig X1¢2) B, 010))) * Solution:
@ (X0 By6 X0 By X0 Bis 0o (TP e12®)  « Compute with adapted “Bit-slicing”
belbtemniva) technique in time ~O(247).

N1 = x300) @ X302) g X3(0) @ (X300 @6 X382 By X3() By ¢3(1))

= [[(SLo(T2 ™Y B (SL1(T14)) @ X0oti+DY)) @ x3t+D)]

® [(SLo(T22)) B (SL,(T1 %)) @ X0(t211)) @ x3(t2+1)
® [(SLo(T2'®)) @ (SLy (T14)) @ X0ta+D))) g x3¢ta+D)]
@ [(SLy(T2' ) B (SL1(T1%)) @ (X081 @y X 02+
Bl XU+ By C0MHY))) @ (X30aHD By X3(2HD By X 30D

Bis C3" D)o @ (SLi(TVW) & SLy(T2™))

te{t1,....t4}
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Problem 2: Searching for the linear masking matrixM =

 Recall the total noise expression:

N = MoN1®) g N2V
o P [SLl(Tl’(t)) oM -T1'® @ SLy(T2®) o M - T2'®

» Assume we have computed the distributions of 32-bit noise variables N1 and N2.
* Problem: How to find a good 32x32 binary matrix M and to maximize the total bias?

* Solution: Spectral analysis techniques (next slides)



Spectral tools: Introduction

N-—-1
* n-bit variables, size of the alphabet N = 2" X =F(X)p = Z Xj-e”
—0
« t- random variables (noise variables) X1, X . XxX® ]j\T—l
+ For arandom variable X, individual values are Xo, X1, Xnv-1 X =W(X)p = Y X - (-
« WHT and DFT W(X)x and F(X)y, for k=0,1,..., N — 1 j=0
+1

« What can we do in frequency domain for cryptanalysis? 0 o 1. 8 5 4, B
* Bias computation and precision problem

» Convolutions of noise distributions -1
N-1
» Search for a linear masking (e.g. nxn binary matrix M)
o 99 g f=1%l=3" x;
» Approximation of S-Boxes 4=

o ..etc
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Spectral tools: Bias computation and precision problem =z

* Bias = Squared Euclidean Imbalance (7 = normalization * Problem: if expected bias is ~2P thenin

factor) N-1 time domain the values must have precision
=N > (X;/f—1/N) at least O(|p/2]) bits!
o . « Example: for an expected bias 2512 we must
« Adistinguisher needs O(1/e(X)) samples handle large number arithmetic and have

precision >256 bits.
* Theorem 1: bias computotion in the frequency domain

|X0|2 Z X

+1

o 1 3 4 N-1
Consequences

* In the frequency domain only low precision is needed,
but with the exponent field

« Data type double in standard C is good enough
(exponent value up to 2-1923)

» Works even if the initial distribution of X is not
normalized (then f is used)



Spectral tools: Convolutions
* Frome.g. [MJ@5]

xO@BEXxP@E.. . BXY) = F Y FXD). F(XP)... ... F(xD)

XVYVexPg.. o X)) =wWlWXxW). wx®).. ... wxh))

» Consequence: the bias of a convolution
1 N—-1 N-1 t
e(XWE.. BXO) = F IF(XIN)? - | F(X D)2 = (H
k=1 ;

t

where f = |F(XM)o2-.. - |F(X®)? = (H f(X(i))OO

=1

Observation & Motivation

» Peak spectrum values contribute the most to the
total bias

» Motivates to learn how to “shuffle” spectrums by
some manipulations in the time domain.

W\



Spectral tools: Linear masking (WHT case)

« Given t noise distributions X(@, ¢ = 0,1,...,¢, find t n x n full-rank Boolean
matrices M (9 that maximize n spectral points of X in the expression:

* Theorem 2: WM - X)) =W(X)k.m

* Algorithm 1: (solution to find M-matrices above)

* Place wanted n indexes as rows of the n x n
matrix K (must be full rank)

« Foreach X (@ find n spectral indexes with peak spectral
values (sorted descending order). Place
those indexes as rows of A(?) (must be full rank)

* Derive M@ =K. AW

W(M@ . X@D) = W(XD), 4oy = W(X(Q))A(q) — peak
0

W\



Spectral tools: Linear masking (DFT case)

e Given t noise distributions X® i = 0,1,...,¢, find ¢ odd constants ¢; that
maximize the peak spectrum value of X in the expression:

X=c XDBHcXPAH.. Bex®

* Theorem6: F(c-X)r =F(X)kc mod N
* Cor. 2&3: F(X)om =F((1+2q) -X)am
( )? (1+ qu (( q)-X)2

-~

=3

—c

* Algorithm 3: (solution to find c-constants above)

* Locate the “group” m where the maximum peak value is
happening over the product of group-max values for all Xs

» Set ¢; suchthat it “rotates” the corresponding spectrum
within the group m

 Best alignment happens at the point 2™
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Spectral tools: Approximation of S-Boxes (Intro)

» Examples for composite S-Box constructions:

To SO( L1 wo ) To T z+1 1 1 SR(U)Q)

™ _Sl( 32 % 32 U ) 1 o 1 T z+1 1 SR(wl)

ro | So( binary wa | ) ro | 1 1 T x+1 Sr(ws)

T3 S ( matrix ws /) ) r3 r+1 1 1 T Skr(ws)
used :1: ZUC used in SH:TOW—SG

« Example of an approximation: X = RS(Qx) & M«x

* Questions:
» How to find M such that the bias of X is large?
* How to derive the spectrum value of X at index k?



Spectral tools: Usual S-Boxes

* For an n-bit S-box S(x) and an n-bit integer k
define the k-th binary-valued (i.e., £1/N) function:

Bl

() = 1/N - (—1)k-8(9:)’ forz=0,1,..., N—1

* Theorem3: W(S(z) ® M - z), = W(B%S](a:)})k'M

* Algorithm 2: (Find a good masking matrix M)
« for each k>0 compute WHT: W(Bgcs](w)})
* loop for A-index over the k-th spectrum above
* collect many enough triples
(e, W)t = W(B‘[[g(m)}))\ — max

« from the triples {(k, A\,w)} construct full-rank
matrices K and A with greedy approach

e derive M = K~ 1A

W\



Spectral tools: Composite S-Boxes

By =UN - (=D)*@ forz=0,1,...
» Theorem 5: If n-bit S-box is constructed from ¢ smaller nq, na, ..., ns-bit S-boxes:
iy
S(z) = (S1(x1) Sa(x2) ... Si(zs))  then

(k] %
W(B§(a)3)2 H W(B(s, (2)} )2

where x = (z1]z2| ... |z¢), k= (k1|ka| ... |kt), A = (A1]A2] ... |As).

» Usage example:
« for all basic S-Boxes (8-bit S8/S1 in ZUC) precompute tables like T;[k;, Ai] = W(B‘[{'ngij(x)}))\i

 then any spectrum values of a large composite S-Box can be derived
through these tables:

let X = RS(Q:U)@M:E then for any kcompute \=k-M, k' =k-R, N =X-Q !

’“_HWBE;()} HT [, Al



Spectral analysis of ZUC — the final step!

 Recall the total noise expression:
N = MoN1t) @ N2t
o P [SLl(Tl’“)) OM-T1® @ SL(T2D)Ye M - T2’<t)]
t€{t1,...,t4}

* For any point k, the spectral expression for the total noise:

WNID), = W(MoN1), - W(N2), - W(SLy(z) & Ma)} - W(SLy(z) & M)}

k k
= W(eN1)x - W(N2)x - W(B{a, )3 WBEL o) 4

where A = k- M.
 Spectral analysis of ZUC: our strategy for the final step to find M
» we selected ~22478 “promising” A-points where |W(oN1),|* > 271°0
- we selected ~218 “promising” k-points where |[W(N2)g|? > 2780
« for each pair (k, A) we compute the spectrum value, then collect best pairs (k, A)
e construct matrices K and A andderive M = K—1- A

W\






Bit-slicing technique: Basics

» Niag, N1b NZare 32-bit noise variables:
» have 32-bit operators (D, Hﬂj H
* 2x16-bit operators HH, 4, Hi¢
» the carry random variables C={0, -1, +1}.

» Consider a 32-bit “toy” noise expression N
(we use the same techniques to compute
N1la, N1b, N2).

N=(X1BX2) & (X185 X255 0)

W\

Noise Expression Result
(X10 H X20)@(X10 Hie X20 Hi CO) 1
(X11 H X21)@(X11 Hie X21 E1GC1) 0

(X1 k-1 & X2k-1 ) D (X1 k-1 e X2k-1 E16Ck-1) 1

et l c2in l Tablek(c1inic2in)
(X1k H XZK)@(X1K His sz Eka) 1
C1outl C2out l Tabley+1(C1out, C20ut)

* Table,(c1, c2...) = number of combinations of k-bit truncated input variables (X1, X2...) such that the
result is a wanted k-bit truncated result R and the output sub-carries are ¢1 and c2.

 Given Table,(c1, c2...) and r, it is easy to compute Table,,,(c1, c2...)

* Transition from k'th table to (k+1)‘th is a linear operation => transition matrices M,, where x=r,.

* Table,(c1, c2...) = vectorV, of length t.
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Bit-slicing technique: Basics
Noise Expression Result

(X10 H X20)@(X10 Hie X20 EmCO) 1

(X11 H X21)@(X11 Hie X21 E1GC1) 0

» Two transition matrices can be precomputed:

MO and M1
(X1,_,mX2_)e(X1, 5. X2_.5.C.) 1
1 l c2; l Tablek(c1inic2in)
(X1k H sz)@(x1 k Hhie sz = Ck) 1
C1outl C2out l Tabley+1(C1out, C20ut)
* General formulae:
Pr{N = (rn-1...70)} = o - (L, 1,..., 1) 1] M., 1] M. -V
i=/2 \i:O P

Ny 7 ~
"

» Precomputation of high and low parts. High part, H[(rn_1...7n2)] LOW Part, L{(rn/2_1...10)]
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Bit-slicing technique: Adaptation

n/2—1
1
| | Pr{N = (rn-1...70)} = gy " (1,1, HM H M,, - Vq
» Cyand C,, are independent variables i=n/2
in ranggi{.@, -1, +1} with certain | Resulting
probabilities. Tableg(out carries) bits

* Table's entries are #of combinations (X109 ® X20)=@ (X109 =« X209 =.Cp) %MRO(O) Ro
*Pr{C,. C
o Caol (X10 = X20)@ (X10 2 X20 =. 0)

. ere . . MR1 R1
* Special transition matrices for bits 9,

15,16
. c2
(X115X245) @ (X11500x X245 5. 0) ¢Mrs ™ | Ris
* Transition matrices are of size DSPR —— :
12.8y 0128
i/H X2 ! (365Mb of RAM each) (X1 16EX216)@ (X1 165 X216 E|16C16) MR16(O) R16
VECTor: (X1178X247)® (X1 475 X247 5, 0) “Mg,; | Raz
* truncated lengths t=28.
» precomputation time O(24¢¢) (X131EX234) ® (X131 X231, 0) >MR31 R31

Tableso(out carries)



Two consecutive words of ZUC, at some time ¢, are expressed as:

Z® = [(T2® o X2®) @\ (T19 B X19) @ X0®)] @ X3,
ZED = [SLy(T2') B (SL(T1®) @ X0 @ X 30+1),

In our approximation of the FSM part we basically do:

MoZ® @ 7D = Mo [[(T2® ¢ x20) @B (T1 B X1®) @ X0®)] @ X31)]
® [SLy(T2®) B (SL(T1®) @ X0#+Y)]) @ X3¢+D)
= Mo[N1®¥ @ T2® @ X2 ¢ T1? @ X1 @ X0 @ X3
@ N2®) @ SL,(T2'D) @ SL, (T1'®) @ X00+D) g x30+1)
= MoN1® g N2®)
® Mo(X2W o X1 9 X0 @ X31) @ X0+ @ X3¢+
® M(oT2® @ oT19) @ SLy(T2V) @ SL,(T1'D)

=T2/ () T1/(t)

Thus we get the following:

MoZ® @ 7D = MoN1® & N2 - noise variables from approximations of H, Hs to @&s
P Mao(X2® @ X1 @ X0®) @ X3®) @ X0+ g X3+

~

These X-terms to be cancelled by adding the above FSM approx in 4 time instances
® M-T2® @ SLy (T2 @ M -T1'® @ SL,(T1'®)

These are just another noise terms, seen as S-box approximations
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