Spectral analysis of ZUC-256

5G future is here!

Alexander Maximov Jing Yang and Thomas Johansson Ericsson Research, Lund, Sweden Lund University, Lund, Sweden

- The algorithm of ZUC-256
- Attack approaches
- Spectral analysis tools

Fast Software Encryption 2020, November 9-13

Introduction of ZUC-128/256

- Domestic cipher used in China
- 32-bit oriented stream cipher
- FSM over GF(2³²)
- LFSR over prime modulo p=2³¹-1
- BR layer
- [2011] 3GPP standard UEA3/UIA3 with 128-bit key
- [2018] ZUC-256 was proposed as a 256-bit key version for 5G air encryption
 - Eurocrypt 2018 Rump session
 - ZUC-256 Workshop
- No attack faster than 2²⁵⁶ found (until now)
- We propose an academic attack 2²⁰ faster than exhaustive key search

Linear approximation: $Z_p \rightarrow 2xGF(2^{16})$

3

$$Pr\{C_L^{(t_1)} = 0\} = Pr\{C_H^{(t_1)} = 0\} \approx 2/3$$
$$Pr\{C_L^{(t_1)} = -1\} = Pr\{C_H^{(t_1)} = -1\} \approx 1/6$$
$$Pr\{C_L^{(t_1)} = +1\} = Pr\{C_H^{(t_1)} = +1\} \approx 1/6$$

Linear approximation: Deriving biased samples

 $X^{(t_1)} \boxplus_{16} X^{(t_2)} = X^{(t_3)} \boxplus_{16} X^{(t_4)} \boxplus_{16} C^{(t_1)}$

• Two consecutive keystream words

 $Z^{(t)} = [(T2^{(t)} \oplus X2^{(t)}) \boxplus ((T1^{(t)} \boxminus X1^{(t)}) \oplus X0^{(t)})] \oplus X3^{(t)}$ $Z^{(t+1)} = [SL_2(T2'^{(t)}) \boxplus (SL_1(T1'^{(t)}) \oplus X0^{(t+1)})] \oplus X3^{(t+1)}$

• New idea: Include LFSR cancellation into the full noise expression, thus making the bias larger

$$\frac{M\sigma[Z^{(t_1)} \oplus Z^{(t_2)} \oplus Z^{(t_3)} \oplus Z^{(t_4)}] \oplus [Z^{(t_1+1)} \oplus Z^{(t_2+1)} \oplus Z^{(t_3+1)} \oplus Z^{(t_4+1)}]}{= M\sigma N1^{(t_1)} \oplus N2^{(t_1)}} \\
\oplus \bigoplus_{t \in \{t_1, \dots, t_4\}} \left[M \cdot T1'^{(t)} \oplus SL_1(T1'^{(t)}) \oplus M \cdot T2'^{(t)} \oplus SL_2(T2'^{(t)}) \right]$$

- σ swap of high and low 16 bits
- M-32x32 Boolean matrix that the attacker can choose

2

Academic distinguishing attack: Results

Sampling

 $M\sigma[Z^{(t_1)} \oplus Z^{(t_2)} \oplus Z^{(t_3)} \oplus Z^{(t_4)}] \oplus [Z^{(t_1+1)} \oplus Z^{(t_2+1)} \oplus Z^{(t_3+1)} \oplus Z^{(t_4+1)}]$

• Total noise expression (details on N1 and N2 will be given later)

 $= M\sigma N1^{(t_1)} \oplus N2^{(t_1)}$

 $\bigoplus_{t \in \{t_1,\dots,t_4\}} \left[M \cdot T1^{\prime(t)} \oplus SL_1(T1^{\prime(t)}) \oplus M \cdot T2^{\prime(t)} \oplus SL_2(T2^{\prime(t)}) \right]$

• Found matrix M

uint32_t M[32] =

```
{ 0x26dad00b, 0x5de94454, 0x3bdfdb0d, 0x1423c42f, 0xc4f35585, 0x1f22e504,
 0xeb07cc1e, 0x3633b301, 0x11b4bca3, 0x6f23b103, 0x912adb7d, 0x6a058e9e,
 0x67d4ef5a, 0xdd0830b6, 0xee579099, 0x9af30192, 0x455d8a7b, 0x22133144,
 0x7fb935a8, 0x4d923b96, 0xc0c9967e, 0x99db94fc, 0x442f1154, 0x17994e1f,
 0x08d2662e, 0xccc8fe9c, 0x994d8fb8, 0xfba4f0dc, 0x462d2a69, 0x373306ed,
 0x91282e11, 0x9b82d788 };
```

• Bias of the total noise (Squared Euclidean Imbalance, SEI)

 $\epsilon(N_{tot}^{(t_1)}) \approx 2^{-236.380623}$

- Distinguishing attack complexity is $O(1/\epsilon) = O(2^{236})$
 - in $s^{(t_1)} + s^{(t_2)} = s^{(t_3)} + s^{(t_4)} \mod p$ the degree is ~2¹⁶⁷

- Problem 1:
 - Computation of 32-bit noise distributions (adapted "bit-slicing" technique)
- Problem 2:
 - Searching for the 32x32 binary masking matrix M *(spectral analysis)*

Noise expressions and "Bit-slicing" technique

 $X^{(t_1)} \boxplus_{16} X^{(t_2)} = X^{(t_3)} \boxplus_{16} X^{(t_4)} \boxplus_{16} C^{(t_1)}$

$$\begin{split} N1a^{(t_1)} &= [((T2^{(t_1)} \oplus X2^{(t_1)}) \boxplus ((T1^{(t_1)} \boxminus X1^{(t_1)}) \oplus X0^{(t_1)}))] \\ &\oplus [((T2^{(t_2)} \oplus X2^{(t_2)}) \boxplus ((T1^{(t_2)} \boxminus X1^{(t_2)}) \oplus X0^{(t_2)}))] \\ &\oplus [((T2^{(t_3)} \oplus X2^{(t_3)}) \boxplus ((T1^{(t_3)} \boxminus X1^{(t_3)}) \oplus X0^{(t_3)}))] \\ &\oplus [((T2^{(t_4)} \oplus (X2^{(t_1)} \boxplus_{16} X2^{(t_2)} \boxminus_{16} X2^{(t_3)} \boxminus_{16} C2^{(t_1)})) \boxplus ((T1^{(t_4)} \\ &\boxminus (X1^{(t_1)} \boxplus_{16} X1^{(t_2)} \boxminus_{16} X1^{(t_3)} \boxminus_{16} C1^{(t_1)})) \\ &\oplus (X0^{(t_1)} \boxplus_{16} X0^{(t_2)} \boxminus_{16} X0^{(t_3)} \boxminus_{16} C0^{(t_1)})))] \oplus \bigoplus_{t \in \{t_1, \dots, t_4\}} (T1^{(t)} \oplus T2^{(t)}) \\ N1b^{(t_1)} &= X3^{(t_1)} \oplus X3^{(t_2)} \oplus X3^{(t_3)} \oplus (X3^{(t_1)} \boxplus_{16} X3^{(t_2)} \boxminus_{16} X3^{(t_3)} \boxminus_{16} C3^{(t_1)}) \end{split}$$

$$N2^{(t_1)} = [[(SL_2(T2'^{(t_1)}) \boxplus (SL_1(T1'^{(t_1)}) \oplus X0^{(t_1+1)})) \oplus X3^{(t_1+1)}] \\ \oplus [(SL_2(T2'^{(t_2)}) \boxplus (SL_1(T1'^{(t_2)}) \oplus X0^{(t_2+1)})) \oplus X3^{(t_2+1)}] \\ \oplus [(SL_2(T2'^{(t_3)}) \boxplus (SL_1(T1'^{(t_3)}) \oplus X0^{(t_3+1)})) \oplus X3^{(t_3+1)}] \\ \oplus [(SL_2(T2'^{(t_4)}) \boxplus (SL_1(T1'^{(t_4)}) \oplus (X0^{(t_1+1)} \boxplus_{16} X0^{(t_2+1)}) \\ \boxplus_{16} X0^{(t_3+1)} \boxminus_{16} C0^{(t_1+1)}))) \oplus (X3^{(t_1+1)} \boxplus_{16} X3^{(t_2+1)} \boxminus_{16} X3^{(t_3+1)}) \\ \boxplus_{16} C3^{(t_1+1)})]] \oplus \bigoplus_{t \in \{t_1, \dots, t_4\}} (SL_1(T1'^{(t_1)}) \oplus SL_2(T2'^{(t_1)}))$$

• Problem:

- 32-bit noise variables
- Just computing Dist(N1a) would require a loop of size 9³ * 2^{17*32}!

• Solution:

 Compute with adapted "Bit-slicing" technique in time ~O(2⁴⁷).

Problem 2: Searching for the linear masking matrix M

• Recall the total noise expression:

$$N_{tot}^{(t_1)} = M\sigma N1^{(t_1)} \oplus N2^{(t_1)}$$
$$\oplus \bigoplus_{t \in \{t_1, \dots, t_4\}} \left[SL_1(T1'^{(t)}) \oplus M \cdot T1'^{(t)} \oplus SL_2(T2'^{(t)}) \oplus M \cdot T2'^{(t)} \right]$$

- Assume we have computed the distributions of 32-bit noise variables N1 and N2.
- Problem: How to find a good 32x32 binary matrix M and to maximize the total bias?
- Solution: Spectral analysis techniques (next slides)

Spectral tools: Introduction

- n-bit variables, size of the alphabet $N=2^n$
- t- random variables (noise variables) $X^{(1)}, X^{(2)}, \dots, X^{(t)}$
- For a random variable X, individual values are $X_0, X_1, \ldots, X_{N-1}$
- WHT and DFT $\mathcal{W}(X)_k$ and $\mathcal{F}(X)_k$, for $k = 0, 1, \dots, N-1$

$$\hat{X}_k = \mathcal{F}(X)_k = \sum_{j=0}^{N-1} X_j \cdot e^{-\frac{i2\pi}{N}kj}$$
$$\hat{X}_k = \mathcal{W}(X)_k = \sum_{j=0}^{N-1} X_j \cdot (-1)^{k \cdot j}$$

- What can we do in frequency domain for cryptanalysis
 - Bias computation and precision problem
 - Convolutions of noise distributions
 - Search for a linear masking (e.g. nxn binary matrix M
 - Approximation of S-Boxes
 - ...etc

Spectral tools: Bias computation and precision problem 🗯

• Bias = Squared Euclidean Imbalance (f = normalization factor) N-1 $(\mathbf{V}) = N \sum_{i=1}^{N-1} (\mathbf{V}_{i}/f_{i} - 1/N)^{2}$

$$\epsilon(X) = N \sum_{i=0}^{N} (X_i/f - 1/N)$$

- A distinguisher needs $\,O(1/\epsilon(X))\,$ samples
- **Theorem 1:** bias computation in the frequency domain

$$\epsilon(X) = \frac{1}{|\hat{X}_0|^2} \sum_{i=1}^{N-1} |\hat{X}_i|^2$$

Consequences

- In the frequency domain only low precision is needed, but with the exponent field
- Data type <u>double</u> in standard C is good enough (exponent value up to 2⁻¹⁰²³)
- Works even if the initial distribution of X is not normalized (then f is used)

- Problem: if expected bias is ~2^{-p} then in time domain the values must have precision at least O(|p/2|) bits!
 - Example: for an expected bias 2⁻⁵¹² we must handle large number arithmetic and have precision >256 bits.

Spectral tools: Convolutions

• From e.g. [MJ05]

$$X^{(1)} \boxplus X^{(2)} \boxplus \ldots \boxplus X^{(t)}) = \mathcal{F}^{-1}(\mathcal{F}(X^{(1)}) \cdot \mathcal{F}(X^{(2)}) \cdot \ldots \cdot \mathcal{F}(X^{(t)}))$$
$$X^{(1)} \oplus X^{(2)} \oplus \ldots \oplus X^{(t)}) = \mathcal{W}^{-1}(\mathcal{W}(X^{(1)}) \cdot \mathcal{W}(X^{(2)}) \cdot \ldots \cdot \mathcal{W}(X^{(t)}))$$

• Consequence: the bias of a convolution

$$\epsilon(X^{(1)} \boxplus \ldots \boxplus X^{(t)}) = \frac{1}{f} \sum_{k=1}^{N-1} |\mathcal{F}(X^{(1)})_k|^2 \cdot \ldots \cdot |\mathcal{F}(X^{(t)})_k|^2 = \frac{1}{f} \sum_{k=1}^{N-1} \left(\prod_{i=1}^t |\mathcal{F}(X^{(i)})_k| \right)^2,$$

where $f = |\mathcal{F}(X^{(1)})_0|^2 \cdot \ldots \cdot |\mathcal{F}(X^{(t)})_0|^2 = \left(\prod_{i=1}^t |\mathcal{F}(X^{(i)})_0| \right)^2$

Observation & Motivation

- Peak spectrum values contribute the most to the total bias
- Motivates to learn how to "shuffle" spectrums by some manipulations in the time domain.

Spectral tools: Linear masking (WHT case)

• Given t noise distributions $X^{(q)}, q = 0, 1, ..., t$, find $t \ n \times n$ full-rank Boolean matrices $M^{(q)}$ that maximize n spectral points of X in the expression:

$$X = M^{(1)}X^{(1)} \oplus M^{(2)}X^{(2)} \oplus \ldots \oplus M^{(t)}X^{(t)}$$

• Theorem 2: $\mathcal{W}(M \cdot X)_k = \mathcal{W}(X)_{k \cdot M}$

Algorithm 1: (solution to find M-matrices above)

- Place wanted n indexes as rows of the $n \times n$ matrix K (must be full rank)
- For each $X^{(q)}$ find n spectral indexes with peak spectral values (sorted descending order). Place those indexes as rows of $\Lambda^{(q)}$ (must be full rank)
- Derive $M^{(q)} = K^{-1} \cdot \Lambda^{(q)}$

 $\mathcal{W}(M^{(q)} \cdot X^{(q)})_{k_0} = \mathcal{W}(X^{(q)})_{k_0 \cdot M^{(q)}} = \mathcal{W}(X^{(q)})_{\lambda_0^{(q)}} \to \text{peak}$

Spectral tools: Linear masking (DFT case)

• Given t noise distributions $X^{(i)}$, i = 0, 1, ..., t, find t odd constants c_i that maximize the peak spectrum value of X in the expression:

$$X = c_1 X^{(1)} \boxplus c_2 X^{(2)} \boxplus \ldots \boxplus c_t X^{(t)}$$

• Theorem 6: $\mathcal{F}(c \cdot X)_k = \mathcal{F}(X)_{k \cdot c \mod N}$

• Cor. 2&3:
$$\mathcal{F}(X) \underbrace{2^m (1+2q)}_{=k} = \mathcal{F}(\underbrace{(1+2q)}_{=c} \cdot X)_{2^m}$$

- Algorithm 3: (solution to find c-constants above)
 - Locate the "group" m where the maximum peak value is happening over the product of group-max values for all Xs
 - Set c_i such that it "rotates" the corresponding spectrum within the group m
 - Best alignment happens at the point 2^m

Spectral tools: Approximation of S-Boxes (Intro)

• Examples for composite S-Box constructions:

• Example of an approximation: $X = RS(Qx) \oplus Mx$

• Questions:

- How to find M such that the bias of X is large?
- How to derive the spectrum value of X at index k?

Spectral tools: Usual S-Boxes

• For an *n*-bit S-box S(x) and an *n*-bit integer k define the k-th binary-valued (i.e., $\pm 1/N$) function:

 $B_{\{S(x)\}}^{[k]} = 1/N \cdot (-1)^{k \cdot S(x)}, \text{ for } x = 0, 1, \dots, N-1$

- Theorem 3: $\mathcal{W}(S(x) \oplus M \cdot x)_k = \mathcal{W}(B^{[k]}_{\{S(x)\}})_{k \cdot M}$
- Algorithm 2: (Find a good masking matrix M)
 - for each k>0 compute WHT: $\mathcal{W}(B^{[k]}_{\{S(x)\}})$
 - loop for λ -index over the k-th spectrum above
 - collect many enough triples

$$\{(k,\lambda,\omega)\}: \ \omega = \left|\mathcal{W}(B^{[k]}_{\{S(x)\}})_{\lambda}\right| \to \max$$

- from the triples $\{(k, \lambda, \omega)\}$ construct full-rank matrices K and Λ with greedy approach
- derive $M = K^{-1}\Lambda$

 $B_{\{S(x)\}}^{[k]} = 1/N \cdot (-1)^{k \cdot S(x)}, \text{ for } x = 0, 1, \dots, N-1$

2

• Theorem 5: If *n*-bit S-box is constructed from *t* smaller n_1, n_2, \ldots, n_t -bit S-boxes: $S(x) = \begin{pmatrix} S_1(x_1) & S_2(x_2) & \ldots & S_t(x_t) \end{pmatrix}^{\mathrm{T}}$ then

$$\mathcal{W}(B_{\{S(x)\}}^{[k]})_{\lambda} = \prod_{i=1}^{t} \mathcal{W}(B_{\{S_i(x)\}}^{[k_i]})_{\lambda_i}.$$

where
$$x = (x_1 | x_2 | \dots | x_t), \ k = (k_1 | k_2 | \dots | k_t), \ \lambda = (\lambda_1 | \lambda_2 | \dots | \lambda_t).$$

- Usage example:
 - for all basic S-Boxes (8-bit S0/S1 in ZUC) precompute tables like $T_i[k_i, \lambda_i] = \mathcal{W}(B_{\{S_i(x)\}}^{[k_i]})_{\lambda_i}$
 - then any spectrum values of a large composite S-Box can be derived through these tables:

let
$$X = RS(Qx) \oplus Mx$$
, then for any k compute $\lambda = k \cdot M$, $k' = k \cdot R$, $\lambda' = \lambda \cdot Q^{-1}$
 $\mathcal{W}(X)_k = \prod_{i=1}^t \mathcal{W}(B_{\{S_i(x)\}}^{[k'_i]})_{\lambda'_i} = \prod_{i=1}^t T_i[k'_i, \lambda'_i]$

Spectral analysis of ZUC – the final step!

• Recall the total noise expression:

$$N_{tot}^{(t_1)} = M\sigma N1^{(t_1)} \oplus N2^{(t_1)}$$
$$\oplus \bigoplus_{t \in \{t_1, \dots, t_4\}} \left[SL_1(T1'^{(t)}) \oplus M \cdot T1'^{(t)} \oplus SL_2(T2'^{(t)}) \oplus M \cdot T2'^{(t)} \right]$$

• For any point k, the spectral expression for the total noise:

$$\mathcal{W}(N_{tot}^{(t_1)})_k = \mathcal{W}(M\sigma N1)_k \cdot \mathcal{W}(N2)_k \cdot \mathcal{W}(SL_1(x) \oplus Mx)_k^4 \cdot \mathcal{W}(SL_2(x) \oplus Mx)_k^4$$
$$= \mathcal{W}(\sigma N1)_\lambda \cdot \mathcal{W}(N2)_k \cdot \mathcal{W}(B_{\{SL_1(x)\}}^{[k]})_\lambda^4 \cdot \mathcal{W}(B_{\{SL_2(x)\}}^{[k]})_\lambda^4,$$

where $\lambda = k \cdot M$.

- Spectral analysis of ZUC: our strategy for the final step to find M
 - we selected ~2^{24.78} "promising" λ -points where $|\mathcal{W}(\sigma N1)_{\lambda}|^2 > 2^{-150}$
 - we selected ~2¹⁸ "promising" k-points where $|\mathcal{W}(N2)_k|^2 > 2^{-80}$
 - for each pair (k, λ) we compute the spectrum value, then collect best pairs (k, λ)
 - construct matrices K and Λ and derive $M = K^{-1} \cdot \Lambda$

Bit-slicing technique: Basics

- *N1a, N1b, N2* are 32-bit noise variables:
 - have 32-bit operators $\oplus, \boxplus, \boxminus$
 - 2x16-bit operators $\boxplus_{16}, \boxminus_{16}$
 - the carry random variables $C = \{0, -1, +1\}$.
- Consider a 32-bit "toy" noise expression N (we use the same techniques to compute N1a, N1b, N2).

```
N = (X1 \boxplus X2) \oplus (X1 \boxminus_{16} X2 \boxminus_{16} C)
```

Noise Expression	Result
$(X1_0 \boxplus X2_0) \oplus (X1_0 \boxminus X2_0 \boxtimes$	∃ ₁₆ C ₀) 1
$(X1_1 \boxplus X2_1) \oplus (X1_1 \boxminus X2_1 \boxtimes$	$\exists_{16} \mathbf{C}_1 \mathbf{)} 0$
$(X1_{k-1} \boxplus X2_{k-1}) \oplus (X1_{k-1} \boxminus X2_{k-1})$	
c1 _{in}	Table _k (c1 _{in} , c2 _{in})
$(X1_k \oplus X2_k) \oplus (X1_k \oplus X2_k)$	$\exists_{16} C_k$) 1
c1 _{out} ↓ c2 _{out} ↓ Tal	ble _{k+1} (c1 _{out} , c2 _{out})

- Table_k(c1, c2...) = number of combinations of k-bit truncated input variables (X1, X2...) such that the
 result is a wanted k-bit truncated result R and the output sub-carries are c1 and c2.
- Given $Table_k(c1, c2...)$ and r_k it is easy to compute $Table_{k+1}(c1, c2...)$
- Transition from k'th table to (k+1)'th is a linear operation => transition matrices $M_{x'}$, where $x=r_k$.
- Table_k(c1, c2...) \rightarrow vector V_k of length t.

Bit-slicing technique: Basics

• Two transition matrices can be precomputed:

 M_0 and M_1

Noise ExpressionResult
$$(X1_0 \boxplus X2_0) \oplus (X1_0 \sqsupset_{16} X2_0 \boxminus_{16} C_0)$$
1 $(X1_1 \boxplus X2_1) \oplus (X1_1 \sqsupset_{16} X2_1 \sqsupset_{16} C_1)$ 0 $(X1_{k-1} \boxplus X2_{k-1}) \oplus (X1_{k-1} \sqsupset_{16} X2_{k-1} \boxminus_{16} C_{k-1})$ 1 $c1_{in}$ $c2_{in}$ Table_k(c1_{in}, c2_{in}) $(X1_k \boxplus X2_k) \oplus (X1_k \sqsupset_{16} X2_k \boxdot_{16} C_k)$ 1 $c1_{out}$ $c2_{out}$ Table_{k+1}(c1_{out}, c2_{out})

3

• General formulae:

$$\Pr\{N = (r_{n-1} \dots r_0)\} = \frac{1}{2^{t \cdot n}} \cdot (1, 1, \dots, 1) \cdot \prod_{i=n/2}^{n-1} M_{r_i} \cdot \underbrace{\prod_{i=0}^{n/2-1} M_{r_i} \cdot V_0}_{\text{High part, } H[(r_{n-1} \dots r_{n/2})]} \cdot \underbrace{\prod_{i=0}^{n/2-1} M_{r_i} \cdot V_0}_{\text{Low part, } L[(r_{n/2-1} \dots r_0)]}$$

Bit-slicing technique: Adaptation

- C₀ and C₁₆ are independent variables in range {0, -1, +1} with certain probabilities.
- Special transition matrices for bits 0, 15, 16
- Transition matrices are of size 2^{12.8}x2^{12.8} (365Mb of RAM each)
- L/H vectors:
 - truncated lengths $t=2^8$.
 - precomputation time $O(2^{46.6})$

$$Pr\{N = (r_{n-1} \dots r_0)\} = \frac{1}{2^{t \cdot n}} \cdot (1, 1, \dots, 1) \cdot \prod_{i=n/2}^{n-1} M_{r_i} \cdot \prod_{i=0}^{n/2-1} M_{r_i} \cdot V_0$$

$$rable_0(out carries)$$

$$(X1_0 \boxplus X2_0) \oplus (X1_0 \boxminus_{r_6} X2_0 \boxminus_{r_6} C_0) M_{R_0}^{(0)} M_{R_1}$$

$$(X1_{15} \boxplus X2_{15}) \oplus (X1_{15} \bowtie_{r_6} X2_{15} \bowtie_{r_6} 0) M_{R_1}^{(15)}$$

$$(X1_{16} \boxplus X2_{15}) \oplus (X1_{15} \bowtie_{r_6} X2_{15} \bowtie_{r_6} 0) M_{R_{15}}^{(15)}$$

$$(X1_{16} \boxplus X2_{16}) \oplus (X1_{16} \bowtie_{r_6} X2_{16} \bowtie_{r_6} C_{16}) M_{R_{16}}^{(0)}$$

$$(X1_{17} \boxplus X2_{17}) \oplus (X1_{17} \bowtie_{r_6} X2_{17} \bowtie_{r_6} 0) M_{R_{17}}^{(15)}$$

$$(X1_{31} \boxplus X2_{31}) \oplus (X1_{31} \bowtie_{r_6} X2_{31} \bowtie_{r_6} 0) M_{R_{31}}$$

$$Table_{32}(out carries)$$

/

Two consecutive words of ZUC, at some time t, are expressed as:

$$Z^{(t)} = [(T2^{(t)} \oplus X2^{(t)}) \boxplus ((T1^{(t)} \boxminus X1^{(t)}) \oplus X0^{(t)})] \oplus X3^{(t)},$$
$$Z^{(t+1)} = [SL_2(T2'^{(t)}) \boxplus (SL_1(T1'^{(t)}) \oplus X0^{(t+1)})] \oplus X3^{(t+1)},$$

In our approximation of the FSM part we basically do:

$$\begin{split} M\sigma Z^{(t)} \oplus Z^{(t+1)} &= M\sigma[[(T2^{(t)} \oplus X2^{(t)}) \boxplus ((T1^{(t)} \boxminus X1^{(t)}) \oplus X0^{(t)})] \oplus X3^{(t)}] \\ \oplus [SL_2(T2'^{(t)}) \boxplus (SL_1(T1'^{(t)}) \oplus X0^{(t+1)})] \oplus X3^{(t+1)} \\ &= M\sigma[N1^{(t)} \oplus T2^{(t)} \oplus X2^{(t)} \oplus T1^{(t)} \oplus X1^{(t)} \oplus X0^{(t)} \oplus X3^{(t)}] \\ \oplus N2^{(t)} \oplus SL_2(T2'^{(t)}) \oplus SL_1(T1'^{(t)}) \oplus X0^{(t+1)} \oplus X3^{(t+1)} \\ &= M\sigma N1^{(t)} \oplus N2^{(t)} \\ \oplus M\sigma(X2^{(t)} \oplus X1^{(t)} \oplus X0^{(t)} \oplus X3^{(t)}) \oplus X0^{(t+1)} \oplus X3^{(t+1)} \\ \oplus M(\underbrace{\sigma T2^{(t)} \oplus \sigma T1^{(t)}}_{=T2'^{(t)} \oplus T1'^{(t)}}) \oplus SL_2(T2'^{(t)}) \oplus SL_1(T1'^{(t)}) \end{split}$$

Thus we get the following:

 $M\sigma Z^{(t)} \oplus Z^{(t+1)} = M\sigma N1^{(t)} \oplus N2^{(t)} - \text{noise variables from approximations of } \boxplus, \boxplus \text{ to } \oplus \text{ to } \oplus \text{ to } \oplus \text{ to } M\sigma(X2^{(t)} \oplus X1^{(t)} \oplus X0^{(t)} \oplus X3^{(t)}) \oplus X0^{(t+1)} \oplus X3^{(t+1)}$ These X-terms to be cancelled by adding the above FSM approx in 4 time instances

 $\oplus M \cdot T2^{\prime(t)} \oplus SL_2(T2^{\prime(t)}) \oplus M \cdot T1^{\prime(t)} \oplus SL_1(T1^{\prime(t)})$

These are just another noise terms, seen as S-box approximations