
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 4, pp. 38–63. DOI:10.46586/tosc.v2024.i4.38-63

A New Practical Cube Attack via Recovering
Numerous Superpolys

Min Zhang1,2 and Yao Sun1,2 (�)

1 Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{zhangmin2022,sunyao}@iie.ac.cn

Abstract. Cube attack is one of the most powerful approaches for recovering keys of
stream ciphers. Practical cube attacks generate several superpolys first and solve the
system constructed by these superpolys afterward. Unlike previous practical attacks,
we propose a new cube attack that transfers the difficulty of generating easy-solving
superpolys to solving the system built by numerous nonlinear ones. In the offline
phase, we recovered lots of nonlinear superpolys by improving the approach proposed
by Delaune et al. at SAC 2022 in theory. In the online phase, taking advantage of
the sparsity and asymmetry of these numerous superpolys, we present a new testing
method to solve the constructed system efficiently. As applications, the latest attack
could practically recover the keys for 820- and 832-round Trivium with the time
complexity no more extensive than 246 and 250, while the previous highest number of
rounds of Trivium that can be attacked practically is 830. We believe the proposed
approach can be used to attack more rounds of Trivium and other stream ciphers.
Keywords: Practical cube attack · Stream ciphers · Trivium · Solving nonlinear
polynomial systems

1 Introduction
Cube Attack: Since Dinur and Shamir proposed the cube attack at EUROCRYPT
2009 [DS09], the cube attack has been effectively employed to attack various stream
ciphers [ADMS09, DS11, FV14, DMP+15, SBD+16]. Todo et al. proposed the division
property in [Tod15,TM16], and its integration with the cube attack significantly improved
the attacks on Trivium, Grain128a, ACORN in [TIHM17] by leveraging the Mixed Integer
Linear Programming (MILP) model. Specifically, let k and v be secret and public variables.
The output bit of a stream cipher can be expressed as a Boolean polynomial f(k, v). A
cube is composed of many values of v’s. Some bits of v take all possible combinations of
values, while the other bits of v remain unchanged. One can obtain a relatively simple
relation in secret variables by taking the sum of the values of f(k, v) over all values in the
cube. This relation is called the superpoly of the cube, and it is much simpler than f(k, v).
By analyzing superpolys, some information about the secret variables can be achieved.

Due to the complex structure of f(k, v), recovering the superpoly from a given cube
has traditionally been challenging. The original paper [DS09] proposed a linearity test to
verify linear superpolys, allowing the algebraic normal form (ANF) of the superpoly to be
recovered if the test confirmed linearity. Later, a quadraticity test was introduced [PJ12]
and was used to mount the attacks against Trivium in [FV14]. However, since all these
attacks were experimental cryptanalysis, there is a probability that the linearity and
quadraticity tests fail.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-09-01 Accepted: 2024-11-01 Published: 2024-12-18

https://doi.org/10.46586/tosc.v2024.i4.38-63
mailto:{zhangmin2022, sunyao}@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Min Zhang and Yao Sun 39

Division Property: A significant advancement of the cube attack is the proposal of
the division property [Tod15,TM16]. Todo et al. revealed the relation between integral
cryptanalysis [KW02] and the division property. At the same time, integral cryptanalysis
was also assumed to be equivalent to square attacks [DKR97] or higher-order differential
attacks [Lai94]. Division property is an effective tool for analyzing the monomials in f(k, v),
but the computation is expensive. Consequently, the Mixed Integer Linear Programming
(MILP) approach was introduced to model the propagations of the bit-based division
property [XZBL16]. Thanks to the efficiency of MILP tools, the bit-based division property
for six lightweight block ciphers was shown. Since then, more improvements have been
given in [SWW17,TIHM17,WHT+18]. However, traditional division property often suffers
from accuracy problems. Taking the method proposed in [TIHM17] for example, if there
is no division trail such that the output is 1, one can confirm that some specific monomial
must not appear in the superpoly with absolute confidence. But if such a division trail
exists, the corresponding monomial may or may not appear. Hao et al. finally resolved
this inaccuracy problem in [HLM+20], where the model for “three-subset division property
without unknown subset” was proposed.

Trivium: Trivium is a bit-oriented synchronous stream cipher based on NLSFR
[DCP08]. It is one of the eSTREAM hardware-oriented finalists and an International
Standard under ISO/IEC 29192-3:2012. Trivium has attracted much attention due to its
simple structure and high level of security. Trivium uses an 80-bit key and an 80-bit IV,
so the complexity of the exhaustive search for the key is 280 evaluations, and any attack of
Trivium must have a lower complexity than 280.

Practical cube attacks against Trivium: a key-recovery attack on 784-round
Trivium was given in [FV14]. In 2021, a practical attack against 805-round Trivium was
proposed in [YT21], and many linear superpolys were found in practical time. In the online
phase of the attack, the linear superpolys make it relatively easy to solve for the secret
variables. Furthermore, superpolys involving balanced secret variables are also utilized in
the attack, which reduces the difficulty of searching for cubes. In [Sun21], practical attacks
on 806 and 808-round Trivium were realized. By improving the method for searching for
valuable cubes whose superpolys each have an independent secret variable, full key-recovery
attacks on 815 and 820-round Trivium were completed in [CT23]. Based on the variable
substitution technique and the combination of superpolys, [LHHW24] further increased the
number of Trivium practical attack rounds to 825 rounds, currently the highest number of
rounds of Trivium vulnerable to a practical attack. It is worth mentioning that [WQW23]
claims to have achieved a practical attack on 830-round Trivium using the correlation
cube attack. This method has two significant limitations: the attack does not apply to
the entire key space, and the attack complexity reaches 260, which we believe is still some
distance from the truly practical attack.

Models for recovering superpolys: A vital step of the cube attack is to recover
the superpoly for a given cube. The first precise MILP-based model was given by Hao et
al. [HLM+20]. Hu et al. improved this model in their consequent works, including [HST+21].
A new graph-based model for describing Trivium was proposed in [DDGP22]. This graph-
based approach uses fewer MILP variables and many new techniques for speed-up. Thus,
the speed of recovering superpolys has been improved significantly. Since our work is
based on the graph-based model, we will introduce Delaune et al.’s work in more detail in
Sec. 2.4. Later, Cheng and Qiao slightly improved the graph-based model by finding more
“patterns” [CQ23], but the efficiency of recovering superpolys is not improved.

Contributions: Practical cube attacks generate several superpolys first and solve
the system constructed by these superpolys afterward. To make the systems easy to
solve, previous practical attacks require generating “good” superpolys, whereas “good”
superpolys usually are linear superpolys or superpolys with balanced bits. However, these
good superpolys are challenging to obtain for a high number of rounds of stream ciphers.

40 A New Practical Cube Attack via Recovering Numerous Superpolys

Thus, the critical insight of our attack is to transfer the difficulty of generating superpolys
to solving them. That is, instead of solving the system constructed by “good” superpolys,
we prefer solving the system built by numerous nonlinear ones that are “not-so-good”. We
have three contributions in this paper.

1. To obtain numerous superpolys efficiently, we improved the graph-based model and
obtained significant improvement in the efficiency. Delaune et al. proposed the
concept of “pattern” to reject useless trails (meaning the solutions) in the graph-
based mode. We found that there are still many useless trails in the models after
using Delaune et al.’s 3CBP pattern. The natural idea is to use more patterns
when building the model, but more patterns tend to lead to errors, as mentioned
in [DDGP22]. So, we studied the properties of the patterns in theory and proposed
new theories to ensure different patterns could work correctly. A few new techniques
were also applied, e.g., dividing the model into sub-models and solving the sub-models
in parallel. As a result, more useless trails can be rejected effectively; hence, the
efficiency of recovering superpolys has improved significantly. Besides, our new
algorithm can find and exploit new patterns during the computation. We believe the
improved graph-based model can be applied to most stream ciphers, not limited to
Trivium.

2. We propose a new practical cube attack against stream ciphers using numerous
superpolys. Specifically, we proposed a new method of solving a system constructed
by numerous nonlinear superpolys. We noticed that the superpolys of stream ciphers
are usually asymmetric in variables, and if the system is over-defined, it is possible
to determine the values of some variables efficiently. Thus, in the new attack, we
first find a mother cube such that its superpolys are relatively sparse, and then we
recover numerous superpolys of its sub-cubes to construct an over-defined system.
In the online phase of the cube attack, we test the values of each unknown to check
whether a contradiction appears. For example, if x = 0 leads to a contradiction, we
can confirm that x = 1 is correct. This test will be very efficient if the number of
superpolys in the system is large and the superpolys are sparse. This test can be
finished in a few hours in our experiments, and the values of about 95% keys can be
determined after this test. At last, we enumerate the values of the undetermined
variables to find out the complete keys, which can also be done practically.

3. We applied the new attack to round-reduced Trivium, and can practically recover
the keys of 820- and 832-round Trivium. We admit that there is a main drawback
to our new attack. That is, we cannot prove our attack is practical for all keys in
theory, which is also the drawback of the correlation cube attacks. However, from the
experiments, we think the new attack is able to recover almost all keys practically.
We summarize related practical attacks against Trivium in Tab. 1.

All superpolys and codes of related algorithms in this paper are available at https:
//github.com/ysun0102/recovering_numerous_superpolys.

This paper is organized as follows. Preliminaries come in Sec. 2. The theory and
algorithm of the new graph-based algorithm is presented in Sec. 3. Sec. 4 introduces the
new cube attack. We apply the new attack to Trivium in Sec. 5. We conclude this paper
in Sec. 6.

https://github.com/ysun0102/recovering_numerous_superpolys
https://github.com/ysun0102/recovering_numerous_superpolys

Min Zhang and Yao Sun 41

Table 1: Summary of the practical key recovery attacks on Trivium. #S.polys: the
number of superpolys used in the attack; Data: the number of oracle requests; Time: the
total time complexity of the attack.

Round #S.polys Cube size Attack type Data Time Reference
672 63 12 Cube 218.58 219 [DS09]
767 35 28-31 Cube 231 245 [DS09]
784 42 30-33 Cube 233 239 [FV14]
805 42 33-38 Cube 238 241.40 [YT21]
806 29 34-37 Cube 239 239.88 [Sun21]
808 37 39-41 Cube 244 244.58 [Sun21]
810 39 40-42 Cube 244 244.17 [LHHW24]
815 35 44-46 Cube 247 247.32 [CT23]
820 30 48-51 Cube 253 253.17 [CT23]
820* 213 38 Correlation Cube 251 260 [WQW23]
820 1912 38-45 Cube 245 < 246 Sec. 5.2
825 31 49-52 Cube 253 253.09 [LHHW24]
825* 212 41 Correlation Cube 253 260 [WQW23]
830* 213 41 Correlation Cube 254 260 [WQW23]
832 1373 43-49 Cube 249 < 250 Sec. 5.2

*: The 820-, 825- and 830-round attacks in [WQW23] work for only 279.8, 279.7 and 279.3 of
the keys in the key space, respectively.

2 Preliminaries
2.1 Cube attack
Let F2[x] be the polynomial ring over the field F2 = {0, 1} in the variables x =
(x0, x1, . . . , xn−1). Given a bit-vector u = (u0, u1, . . . , un−1) ∈ Fn

2 , the product
∏n−1

i=0 xui
i

is called a monomial in F2[x]. A polynomial is a finite sum of monomials.
Cube attack was proposed at EUROCRYPT 2009 [DS09]. For a cipher with n secret

variables and m public variables, each output bit of this cipher can be represented as a
polynomial in these variables. Denote k = (k0, k1, . . . , kn−1) and v = (v0, v1, . . . , vm−1)
as the secret and public variables, where ki, vj ∈ F2 for 0 ≤ i < n and 0 ≤ j < m. The
output bit can be written as a polynomial f in F2[k, v].

Let I ⊆ {0, 1, . . . , m− 1} be a set of indices of public variables. A cube determined
by I is denoted as CI , and contains all 2|I| possible combinations of the values of vj ’s for
j ∈ I, while the value of vl remains unchanged for l ∈ {0, 1, . . . , m− 1} \ I. We have the
following equation: ∑

CI

f =
∑
CI

(tI · p + q) =
∑
CI

tI · p +
∑
CI

q = p,

where tI represents the product
∏

i∈I vi, and there is no term of q divisible by tI . The
polynomial p is called the superpoly of the cube CI . By the above definitions, the
superpoly of CI only involves the inactive public variables vl where l ∈ {0, 1, . . . , m−1}\ I,
and the values of these variables are often preset to constants in cube attacks. So the
superpoly p is a polynomial in F2[k].

We say a polynomial p ∈ F2[k] is balanced, if |{k | p(k) = 0}| = |{k | p(k) = 1}| = 2n−1.
A balanced superpoly p usually leads to a key-recovery attack. In the offline phase of the
cube attack, attackers recover the superpoly p of a cube CI . In the online phase, attackers
get the value a of p by querying the encryption oracle 2|I| times. Since the superpoly is
balanced, 2n−1 invalid keys will be filtered out by the equation p = a. To recover the whole

42 A New Practical Cube Attack via Recovering Numerous Superpolys

key, it suffices to query the encryption oracle another 2n−1 times. The overall number of
querying times of this attack is 2|I| + 2n−1.

Note that more balanced superpolys may filter out more invalid keys, but the complexity
of obtaining the values of these superpolys increases. However, the costs of calculating
these values may be lowered in a special case. That is, if several cubes and their indexes
are all from the subsets of a set S, then it only needs 2|S| requests to calculate all the
values of the superpolys. In this case, we usually call S as a mother cube. This technique
was used in [YT21] to obtain practical cube attacks against round-reduced Trivium.

2.2 Trivium
Trivium is an NLFSR-based stream cipher [DCP08]. Trivium has a 288-bit internal
state (s0, s1, . . . , s287) which is divided into three registers. The 80-bit secret key k =
(k0, k1, . . . , k79) is loaded into the first register, and the 80-bit initialization vector v =
(v0, v1, . . . , v79) is input to the second register. The other state bits are set to 0 except the
last three bits in the third register. That is, we have

(s0, s1, . . . , s92) ← (k0, k1, . . . , k79, 0, . . . , 0),
(s93, s94, . . . , s176) ← (v0, v1, . . . , v79, 0, . . . , 0),

(s177, s178, . . . , s287) ← (0, 0, . . . , 0, 1, 1, 1).

The state of Trivium is updated in the following way:

t1 ← s65 + s92,
t2 ← s161 + s176,
t3 ← s242 + s287,
z ← t1 + t2 + t3,

t1 ← t1 + s90 · s91 + s170,
t2 ← t2 + s174 · s175 + s263,
t3 ← t3 + s285 · s286 + s68,

(s0, s1, . . . , s92) ← (t3, s0, . . . , s91),
(s93, s94, . . . , s176) ← (t1, s93, . . . , s175),

(s177, s178, . . . , s287) ← (t2, s177, . . . , s286),

where z denotes the 1-bit key stream. The state is updated 1152 times first. After the key
initialization is done, the one-bit key stream is produced by every update function.

2.3 Graph
In this paper, a vertex is denoted as an uppercase letter, for instance, A, B, C. An edge
has a direction from one vertex to another, and we differentiate the starting and ending
vertexes of an edge. In Delaune et al.’s graph-based Model [DDGP22], edges also have
four types.

For an edge e, we use St(e), En(e), and Type(e) to denote the starting vertex, the
ending vertex, and the type of e. Two edges are identical only when they have the same
starting vertex, ending vertex, and type. For a vertex A, we denote by in(A) the set of
incoming edges of A, and respectively, we use out(A) to represent the set of outgoing edges
of A. In case we do not know the specific type of edge e, we also use (St(e), En(e)) to
represent e briefly. For an edge e, we define the set V(e) := {St(e), En(e)}. Similarly, for
a set of edges, say E , we define V(E) :=

⋃
e∈E V(e).

A graph consists of a set of vertexes and edges and is denoted as lowercase Greek
letters, such as α, β, γ, τ . Given a graph α, its vertexes and edges are refered as V(α)
and E(α). In this paper, we only consider the graphs without isolated vertexes, i.e., any
vertex in the graph is either a starting or ending vertex of some edge. In this case, V(α) is
completely determined by E(α), i.e. V(α) = V(E(α)).

Min Zhang and Yao Sun 43

In a graph α, we say a vertex A is a top vertex if in(A) = ∅, and B is a bottom
vertex if out(B) = ∅. A vertex is called an inner vertex if it is neither a top nor a bottom
vertex in α. We use Top(α), Bot(α), Inner(α) to refer to the sets of the top, bottom,
and inner vertexes of the graph α. Clearly, we have V(α) = Top(α) ∪ Bot(α) ∪ Inner(α).
For two graphs α and β, we say β contains α, or equivalently α is a subgraph of β, if
E(α) ⊆ E(β), and we write α ⊆ β for short.

Given two graphs α and β, we define α− β and α + β as

α− β := (V(E(α) \E(β)), E(α) \E(β)) and α + β := (V(α) ∪V(β), E(α) ∪E(β)).

where E(α) \E(β) is the set that E(α) minus E(β).

2.4 Graph-based model for Trivium
In [DDGP22], Delaune et al. proposed a graph-based model to recover the superpoly
of Trivium when a cube is given. They constructed a directed graph in which a vertex
represents a variable, and an edge from X to Y indicates that the variable Y appears in
the ANF of X. The round function of Trivium defines the possible transitions from a
vertex to its children. Thus, a Deterministic Finite Automaton (DFA) can be deduced
from the description of Trivium. We rewrite these relations equivalently by Eq. (1):

Ar := Cr−66 ⊕ Cr−111 ⊕ Cr−110 · Cr−109 ⊕Ar−69,
Br := Ar−66 ⊕Ar−93 ⊕Ar−92 ·Ar−91 ⊕Br−78,
Cr := Br−69 ⊕Br−84 ⊕Br−83 ·Br−82 ⊕ Cr−87,

(1)

where Ar, Br, Cr represents the output bit of the register A, B, or C in the r-th round.
There are four possible transitions to go from the output bit of each register (A, B, or C)
to its successors: three of them are simple edges, and one is the doubling edge (⇒). The
three simple transitions were named by the looping (), the short (99K), and the long (→)
one. For example, from the first equation in Eq. (1), the edge Ar Ar−69 is a looping
edge; Ar 99KCr−66 and Ar→Cr−111 are short and long edges, respectively. The doubling
edge is a bit complex. The edges Ar⇒Cr−110 and Ar⇒Cr−109 are both doubling edges.
Please note that the doubling edges Ar⇒Cr−110 and Ar⇒Cr−109 are two edges in the
graph view, but they share the same variable in Delaune et al.’s model because they always
appear or disappear simultaneously. As the doubling edges always appear in a pair, we
call the edges like Ar⇒Cr−110 and Ar⇒Cr−109 a pair of doubling edges.

Delaune et al. presented a MILP implementation of the graph-based model of Trivium.
Here, we illustrate the model using the notations in Sec. 2.3, slightly different from the
original one. Please refer to [DDGP22] for more details about the original model. All
variables related to the edges are declared as Boolean variables:

Xe =
{

1 if the edge e appears in a valid graph,
0 otherwise.

We define the validation of the graphs below, implying that not all graphs are allowable in
Delaune et al.’s graph-based model.

Definition 1. A graph γ = (V, E) is valid if the following two conditions hold.

1. No isolate vertexes in V, i.e., each vertex is a starting or ending vertex of some edge.

2. For any non-bottom vertex P , the size of out(P) is either 1 or 2. If |out(P)| = 1,
the edge in out(P) can only be the looping, long, or short edge; otherwise, out(P)
must contain a pair of doubling edges.

44 A New Practical Cube Attack via Recovering Numerous Superpolys

A solution to the graph-based MILP model should be a valid graph, and such a solution
is also called a trail in [DDGP22]. A trail corresponds to a monomial in the superpoly.

Please remark that in Delaune et al.’s MILP model, the doubling edges are treated as a
whole. Let A⇒B and A⇒C be a pair of doubling edges. Only one variable x is used to
represent both X(A,B) and X(A,C) in the model. For instance, x = 1 means both A⇒B
and A⇒C appear in the trail; otherwise, neither A⇒B nor A⇒C appears.

Some constraints are added to ensure the MILP solutions are all valid graphs. The
graph α being valid means∑

e∈out(A)

Xe ≤ 1, for ∀A ∈ V (α) \ Bot(α).

If there is an outgoing edge from A, then there should be an incoming edge:∑
e∈out(A)

Xe ≤
∑

e′∈in(A)

Xe′ , for ∀A ∈ Inner(α).

Conversely, if there is no outgoing edge from A, then there should be no incoming edges:

|in(A)| · (
∑

e∈out(A)

Xe) ≥
∑

e′∈in(A)

Xe′ , for ∀A ∈ Inner(α).

If V is a cube variable, we use the following constraint to ensure V appears:∑
e∈in(V)

Xe ≥ 1.

After the MILP model was built, Delaune et al. proposed several techniques to speed
up its solving. One important technique is the “3 consecutive bit” pattern technique, which
rejects useless trails efficiently.

In the MILP model built for recovering a superpoly, each trail (i.e. a feasible solution
to the model) corresponds to a monomial in the superpoly. To obtain the precise repre-
sentation of the superpoly, one needs to calculate all trails. As the superpoly is Boolean,
a monomial vanishes if it appears twice. Thus, whether a monomial “finally” appears in
the representation of the superpoly is determined by how many trails correspond to this
monomial. In other words, if the number of trails is even, this monomial does not appear
in the superpoly. Moreover, if the number of trails related to a monomial is 3, then 2 of
the 3 trails make no contributions to the superpoly. So, even numbers of trails related to
the same monomial are useless in recovering the superpolys. It is generally agreed that if
a MILP model has more solutions, it takes more time to solve this model. Delaune et al.
proposed the “3 consecutive bit” pattern to detect the trails always appearing in pairs. In
this way, they can reject an even number of trails related to the same monomial and speed
up the procedure of recovering superpolys. However, Delaune et al. only used one pattern
to reject pairing trails. Later, Cheng and Qiao found more patterns [CQ23], but they did
not accelerate the model’s solving procedure.
Pattern vs. pattern instance Delaune et al. proposed the concept of pattern but did
not give a rigorous definition. However, by saying a pattern, they mean a pattern instance.

Definition 2. Let Γ = {γ0, γ1} be a set of graphs. We say Γ is a 2-pattern instance if
γ0 and γ1 are valid, γ0 ̸= γ1, Top(γ0) = Top(γ1) and Bot(γ0) = Bot(γ1).

Similarly, we can define k-pattern instance.
To our understanding, a “pattern” is like a “template”, where some parameters exist to

be set. When the parameters are specialized, a “2-pattern” becomes a “2-pattern instance”.

Min Zhang and Yao Sun 45

(a) A pattern (b) A pattern instance

r = 97

C97

B15 B14

C96 C95

B13 B12

C97

B15 B14

C96 C95

B13 B12

Cr

Br−82 Br−83

Cr−1 Cr−2

Br−84 Br−85

Cr

Br−82 Br−83

Cr−1 Cr−2

Br−84 Br−85

Figure 1: 2-pattern vs. 2-pattern instance

In this sense, we think the left figure of Fig. 1 stands for a 3-consecutive bit pattern, and
the right figure illustrates an instance of this pattern when r is specialized to 97.

We denote a 2-pattern by a calligraphic letter, e.g., A,B. An instance a of a 2-pattern
A is a specialization and denoted by a = (α0, α1). Given a 2-pattern instance a = (α0, α1),
we define the vertexes and edges of a as

V(a) = V(α0) ∪V(α1) and E(a) = E(α0) ∪E(α1).

Besides, the top, bottom, and inner of a are defined as

Top(a) = Top(α0) = Top(α1), Bot(a) = Bot(α0) = Bot(α1), Inner(a) = Inner(α0)∪Inner(α1).

Please note that we have Top(a) ∪ Bot(a) ⊆ V(α0) ∩V(α1), but V(α0) ∩V(α1) may be
strictly larger than Top(a) ∪ Bot(a). So, we should consider the different vertexes in α0
and α1. For the 2-pattern a = (α0, α1) we define the set of different vertexes as

Diff(a) := V(a) \ (V(α0) ∩V(α1)).

For simplification, as we rarely discuss patterns but always talk about the instances,
we call pattern instances as patterns for short if no confusion appears.

3 A New Graph-based Model for Recovering Superpolys
A critical step of the new attacks is to obtain numerous superpolys. However, recovering
superpolys is costly, particularly when the superpoly is dense. In [DDGP22], Delaune et al.
proposed a graph-based model for recovering superpolys, and this model has been proven
very efficient compared with previous models, e.g. [HLM+20].

We think Delaune et al.’s graph model’s improvement in efficiency mainly comes from
two aspects. Firstly, in the graph-based model, the variables stand for whether the edges
appear. This change in data structure decreases the number of variables and simplifies
the representation of constraints. Secondly, Delaune et al. presented many techniques
for speeding up the solving procedure of the constructed MILP model. We think one of
their important techniques is to use the “3 consecutive bit” pattern to reject many useless
solutions of the model.

However, Delaune et al. only used one 2-pattern to reject “pairing trails”, which are
the trails appearing in pairs. Later, Cheng and Qiao found more 2-patterns [CQ23], but
they did not accelerate the model’s solving procedure. We think the main obstacle is that
no mathematical theory exists to show how different 2-patterns work correctly when used
simultaneously.

46 A New Practical Cube Attack via Recovering Numerous Superpolys

Therefore, to recover the superpolys more efficiently, we aim to find and use more
2-patterns to reject the useless pairing trails. For this goal, we need some theories to
ensure the correctness when several 2-patterns are used simultaneously.

3.1 Theory
In this subsection, we study and answer the following three questions respectively.

1. Which kinds of trails can be rejected by a 2-pattern?

2. How do two 2-patterns work correctly when used simultaneously?

3. How do several 2-patterns work correctly when used simultaneously?

3.1.1 Which kinds of trails can be rejected by a 2-pattern?

A trail of a graph-based MILP model corresponds to a monomial in the superpoly. It is
easy to find out that only two trails related to the same monomial can be removed without
bringing any error in recovering the superpoly. Let m be a monomial, and Tm be the set
of all trails of the graph-based model related to the monomial m.

The patterns given by Delaune et al. and Cheng-Qiao are all subgraphs of the complete
trails. Intuitively, if two trails are only different in the subgraphs involved by a 2-pattern,
these two trails could be rejected by the 2-pattern, e.g., the two left graphs in Fig.
2. However, to ensure a 2-pattern works correctly, the trails to be rejected have more
requirements.

α0 α1

(a) A trail τ s.t. α0 ∈ τ (b) A trail τ ′ s.t. α1 ∈ τ ′ (c) Another trail τ ′′ s.t. α1 ∈ τ ′′

B773

... ...

B250

A184

C118

B35 B36

v42v43

B773

... ...

B250

B172

A106

C40

v42 v43

B773

... ...

A227

C118
...

B49

v19

B250

B172

A106

C40

v42 v43

Figure 2: Three trails and a 2-pattern a = (α0, α1).

Definition 3. Let τ ∈ Tm be a trail and a = (α0, α1) be a 2-pattern. We say τ is
replaceable with respect to a, if there exists αi such that αi ⊆ τ and

V(τ − αi) ∩Diff(a) = ∅. (2)

In Tm, the set consists of all replaceable trails with respect to a is called the replaceable
set of a in Tm, denoted by Rep(a).

Proposition 1. Let a = (α0, α1) be a 2-pattern and τ ∈ Tm be a trail such that α0 ⊆ τ .
If τ ∈ Rep(a), then τ − α0 + α1 is also in Rep(a).

Min Zhang and Yao Sun 47

Proof. As τ is replaceable with respect to a, we have V(τ − α0) ∩Diff(a) = V(τ − α0) ∩
(V(a) \ (V(α0) ∩ (V(α1))) = ∅ by definition. Thus, τ ′ := τ − α0 + α1 is a valid graph
without any isolated vertex, which means it is also a trail.

As Bot(τ) = Bot(τ ′), the trails τ and τ ′ correpond to the same monomial. Besides,
V(τ − α0)∩Diff(a) = V(τ ′ − α1)∩Diff(a) = ∅ implies τ ′ is also repleaseable with respect
to a. Thus, we have τ ′ ∈ Rep(a).

In the above proof, we construct a special trail related to the given trail in the replaceable
set. Let a = (α0, α1) be a 2-pattern and τ ∈ Tm be a trail such that α0 ⊆ τ . If τ ∈ Rep(a),
then we define τ ′ := τ − α0 + α1 as the dual trail of τ , and denote it as Dual(τ). Prop. 1
implies if τ ∈ Rep(a), so is Dual(τ). Moreover, we have τ = Dual(Dual(τ)), which deduces
the following corollary.

Corollary 1. Let a = (α0, α1) be a 2-pattern. Then the number |Rep(a)| is even.

The requirement in Eq. (2) is essential to construct a new valid trail. For example in
Fig. 2, the trail τ ′′ contains α1 but τ ′′ is not replaceable with respect to a due to the fact
V(τ ′′ − α1) ∩Diff(a) = {C118}. This leads to that τ ′′ − α1 + α0 is not valid, because the
vertex C118 has two different types of outgoing edges in τ ′′ − α1 + α0, i.e. the short edge
C118 99KB49 and the doubling edges C118⇒B35, C118⇒B36.

Next, we show how to generate constraints in MILP models to reject the pairing trails
in Rep(a) for a given 2-pattern a = (α0, α1).

Proposition 2. Let a = (α0, α1) be a 2-pattern. Denote ini(V) := in(V) ∩ E(αi) and
outi(V) := out(V) ∩E(αi) for V ∈ V(αi) and 1 ≤ i ≤ 2. The following constraints will
reject all trails in Rep(a):∑
V ∈Top(α0),e∈out0(V)

Xe+
∑

V ∈Inner(α0),e∈out0(V)

(|in0(V)|·Xe) <
∑

V ∈Inner(a),e∈in(V)

Xe+|Top(α0)|,

and ∑
V ∈Top(α1),e∈out1(V)

Xe+
∑

V ∈Inner(α1),e∈out1(V)

(|in1(V)|·Xe) <
∑

V ∈Inner(a),e∈in(V)

Xe+|Top(α1)|.

Proof. For any inner vertex V of the graph α0, we have∑
e∈out0(V)

|in0(V)| ·Xe ≤
∑

e∈in(V)

Xe, (3)

since the basic constraint of the graph-based model requires that the number of outgoing
edges of a vertex cannot exceed the number of incoming edges of this vertex.

Since |out(V)| ≤ 1 for any vertex V in a valid graph, then we have∑
e∈out(V)

Xe ≤ |Top(α0)|, for V ∈ Top(α0). (4)

Summing up Eq. (3) and (4) for vertexes in Inner(α0) and Top(α0), we obtain∑
V ∈Top(α0),e∈out0(V)

Xe+
∑

V ∈Inner(α0),e∈out0(V)

(|in0(V)|·Xe) ≤
∑

V ∈Inner(a),e∈in(V)

Xe+|Top(α0)|.

Considering the trails in the replaceable set Rep(a), the equality holds only when a trail
τ ∈ Rep(a) contains the 2-pattern. Deleting this equality will reject this trail exactly
and does not affect other others. Similarly, the second constraint rejects exactly the trail
τ ′ ∈ Rep(a) that covers α1.

Similarly, the second constraint rejects exactly the trail τ ′ that covers α1 such that
V(τ ′ − α1) does not involve any vertex in Inner(a).

48 A New Practical Cube Attack via Recovering Numerous Superpolys

Example 1. For example, we consider the 2-pattern a = (α0, α1) used in Fig. 2, and
illustrate how to add constraints to reject trails in Rep(a). From the figure, we have α0 =
(V0, E0), α1 = (V1, E1), V0 = {B250, A184, C118, B35, B36, v42, v43}, E0 = {(B250, A184),
(A184, C118), (C118, B35), (C118, B36), (B35, v43), (B36, v42)}, V1 = {B250, B172, A106, C40,
v42, v43}, E1 = {(B250, B172), (B172, A106), (A106, C40), (C40, v42), (C40, v43)}. Here, we
simplify the notation (B250, A184) to e(250,184) and denote its variable as X(250,184). We
also abuse the notation X(36,42) to represent the variable of the edge (B36, v42).

Therefore, the constraint corresponding to α0 is:

X(250,184) + X(184,118) + X(118,35) + X(35,43) + X(36,42) <
∑

e∈Inner(a)

Xe + 1. (5)

Please remark that e(118,35) and e(118,36) form a pair of doubling edges. In Delaune et al.’s
graph-based model, they share the same variable X(118,35) and only appear once on the
left of the above constraint. Similarly, the constraint corresponding to α1 is:

X(250,172) + X(172,106) + X(106,40) + X(40,43) <
∑

e∈Inner(a)

Xe + 1. (6)

There is another pair of doubing edges e(40,43) and e(40,42), so only one veriable X(40,43)
appears in the left.

Note that after adding these constraints in the model, the two left trails in Fig. 2
do not satisfy the above two constraints and will not be the solutions to the model. For
example, if α0 is a trail, the left side of Eq. (5) is 5, while the right is also 5, implying the
inequality does not hold. However, the right trail in Fig. 2 satisfies the above constraints
and is still a solution to the model. Because the edge e(227,118) appears in the trail, which
means X(227,118) = 1 and e(227,118) ∈ Inner(a). Thus, Eq. (5) and (6) hold, and the trail
cannot be rejected. In this way, only 2 of the 3 trails are rejected; hence, no error occurs.

Now, we can answer the question proposed in the title of this subsection: not all trails
that cover some subgraph of a 2-pattern can be rejected by the 2-pattern correctly, and
only the trails in the replaceable set of this 2-pattern can.

3.1.2 How do two 2-patterns work correctly when used simultaneously?

In the practical recovery of superpolys, the number of trails rejected by a single 2-pattern
instance is limited. Even in the original graph-based model, Delaune et al. also exploited
many 3-consecutive bit pattern instances, and the authors also mentioned that although
they found some other patterns, they cannot guarantee correctness if using different types
of patterns simultaneously. In this subsection, we will solve this problem in theory. Besides,
our theory also explains why many 3-consecutive bit pattern instances can work correctly
when used simultaneously.

We consider the scenario where two 2-patterns a = (α0, α1) and b = (β0, β1) are
applied simultaneously. If the constraints related to a and b are appended to the MILP
model, the trails rejected by these two 2-patterns are Rep(a) ∪ Rep(b).

Lemma 1. Let a and b be two 2-patterns and m be a monomial. If the number Rep(a) ∪
Rep(b) ⊆ Tm is even, then the superpolys recovered by the models with and without these
two 2-patterns are identical.

Proof. Adding these two 2-patterns can only reject the trails in Rep(a) ∪Rep(b) ⊆ Tm. If
m appears even times, then it makes no difference to the final superpoly.

Based on the above lemma, we have a condition for ensuring two 2-patterns work
correctly. The next question is how to determine whether |Rep(a) ∪ Rep(b)| is even.

Min Zhang and Yao Sun 49

According to the principle of inclusion-exclusion, we have

|Rep(a) ∪ Rep(b)| = |Rep(a)|+ |Rep(b)| − |Rep(a) ∩ Rep(b)|.

As we have shown |Rep(a)| and |Rep(b)| are both even, the number |Rep(a) ∪ Rep(b)| is
even if and only if |Rep(a) ∩ Rep(b)| is even.

The set Rep(a) ∩Rep(b) consists of the trails covering the subgraphs from both a and
b. Thus, we should consider the subgraphs in a and b together to see if contradictions
occur. For two 2-patterns a = (α0, α1) and b = (β0, β1), all possible compositions are
α0 + β0, α0 + β1, α1 + β0, α1 + β1. However, it is possible that there does not exist a trail
containing some αi + βj at all, or although a trail covers some αi + βj , its dual trail (in
Rep(a) or Rep(b)) cannot. These cases may result in |Rep(a) ∩ Rep(b)| being odd. Thus,
we study a special composition of the subgraphs in a and b.

Definition 4. Let a = (α0, α1) and b = (β0, β1) be two 2-patterns. We say αi is
consistent with βj for 0 ≤ i, j ≤ 1, if

1. αi + βj is a valid graph, and

2. the following two equations hold

V(αi − βj) ∩Diff(b) = ∅ and V(βj − αi) ∩Diff(a) = ∅.

In the Fig. 3, we can see α0 is consistent with β0, but α1 is not consistent with β0.
Although α1 + β0 is a valid graph, but β0’s vertex C90 has an extra incoming edge in
α1 + β0, which means V(α1 − β0) ∩Diff(b) = {C90}.

A200

C91 C90

A199 A198

C89 C88

A200

C91 C90

A199 A198

C89 C88

A200

C91 C90

B7 B6

A200

C89

B7 B6

α0

α1

β0

β1

α0 + β0 α1 + β0

A200

C91 C90

B7 B6

A199 A198

C89 C88

A200

C91 C90

B7 B6

A199 A198

C89 C88

Figure 3: β0 is consistent with α0, but inconsistent with α1.

By defintion, if αi is consistent with βj , then βj is also consistent with αi. We use the
following proposition to check whether αi + βj is valid.

Proposition 3. Let α and β be two valid graphs. Then α ∪ β is valid, if and only if for
any vertex V ∈ V(α) ∩V(β), V has identical outgoing edges in both α and β.

50 A New Practical Cube Attack via Recovering Numerous Superpolys

Note that if V(α) ∩V(β) = ∅, the graph α ∪ β is always valid. Moreover, we have the
following proposition.

Proposition 4. Let a = (α0, α1) and b = (β0, β1) be two 2-patterns. If V(a) ∩V(b) = ∅,
then αi is consistent with βj for all 0 ≤ i, j ≤ 1.

Proof. V(a) ∩V(b) = ∅ implies V(αi − βj) = ∅.

Thus, the introduction of Def. 4 is intended to solve the problems appearing in the
case V(a) ∩V(b) ̸= ∅. We introduce the second condition of Def. 4 because we hope to
treat the composite graph αi + βj as a subgraph of a new pattern.

Definition 5. Let a = (α0, α1) and b = (β0, β1) be two 2-patterns. The set {αi + βj |
αi is consistent with βj for 0 ≤ i, j ≤ 1} is called the composite set of a and b, denoted
as Comp(a, b).

The set Comp(a, b) is a |Comp(a, b)|-pattern, so we can also define the replaceable set
of Comp(a, b) in the same way as Def. 3. But in practical use, we do not directly discuss
the trails in Rep(Comp(a, b)). We always discuss the trails in the following set

SRep(Comp(a, b)) := Rep(Comp(a, b)) ∩ Rep(a) ∩ Rep(b),

where “S” is short for “strong” and we call SRep(Comp(a, b)) the strong replaceable set
of Comp(a, b). By definition, for any τ ∈ SRep(Comp(a, b)), assume αi + βj ⊂ τ , then
we have

V(τ − (αi + βj)) ∩ (Diff(a) ∪Diff(b) ∪Diff(Comp(a, b)) = ∅.

Proposition 5. Let a = (α0, α1) and b = (β0, β1) be two 2-patterns, and λ, λ′ ∈
Comp(a, b) be two sub-graphs. If there exists a trail τ ∈ SRep(Comp(a, b)) s.t. λ ⊆ τ ,
then there exists τ ′ ∈ SRep(Comp(a, b)) s.t. λ′ ⊆ τ ′.

Proof. For τ ∈ SRep(Comp(a, b)), we have τ ∈ Rep(Comp(a, b)). Then by the definition
of replaceable set, there exists τ ′ ∈ Rep(Comp(a, b)) such that λ′ ⊆ τ ′ and τ −λ = τ ′−λ′.
It suffices to show τ ′ ∈ SRep(Comp(a, b)). As τ ′ ∈ Rep(Comp(a, b)), it suffices to show
τ ′ ∈ Rep(a) and τ ′ ∈ Rep(b). We next prove τ ′ ∈ Rep(a).

Firstly, assume λ′ = αi + βj for some i, j ∈ {0, 1}, since λ′ ⊆ τ ′, we have αi ⊆ τ ′.
Secondly, since τ ∈ SRep(Comp(a, b)) ⊆ Rep(a) and there exists some α such that

α ⊆ λ, then we have V(τ − λ) ∩ Diff(a) ⊆ V(τ − α) ∩ Diff(a) = ∅. By assumption, we
have τ − λ = τ ′ − λ′, then we get V(τ ′ − λ′) ∩Diff(a) = ∅.

Finally, we have V(τ ′−αi) = V(τ ′−(αi+βj)+(βj−αi)) ⊆ V(τ ′−(αi+βj))∪V(βj−αi).
Since V(τ ′ − (αi + βj)) ∩Diff(a) = V(τ ′ − λ′) ∩Diff(a) = ∅ and V(βj − αi) ∩Diff(a) = ∅
due to βj being consistent with αi, we have V(τ ′ − αi) ∩Diff(a) ⊆ (V(τ ′ − (αi + βj)) ∪
V(βj − αi)) ∩Diff(a) = ∅.

Thus, we have proved τ ′ ∈ Rep(a). Similarly, we can prove τ ′ ∈ Rep(b), and the
proposition is proved.

Corollary 2. Let a = (α0, α1) and b = (β0, β1) be two 2-patterns. If |Comp(a, b)| is
even, then |SRep(Comp(a, b))| is even.

Proof. By Prop. 5, for any τ ∈ SRep(Comp(a, b)), we can find another |Comp(a, b)| − 1
trails in SRep(Comp(a, b)), which means |Comp(a, b)| divides SRep(Comp(a, b)).

Lemma 2. Let a = (α0, α1) and b = (β0, β1) be two 2-patterns. We have Rep(a) ∩
Rep(b) = SRep(Comp(a, b)).

Min Zhang and Yao Sun 51

Proof. On one hand, we have SRep(Comp(a, b)) = Rep(Comp(a, b))∩Rep(a)∩Rep(b) ⊆
Rep(a) ∩ Rep(b).

On the other hand, we prove the inclusion Rep(a) ∩ Rep(b) ⊆ SRep(Comp(a, b)). If
suffices to show that for any τ ∈ Rep(a) ∩ Rep(b), we have τ ∈ Rep(Comp(a, b)).

Firstly, suppose α0 ⊆ τ and β0 ⊆ τ , we prove α0 +β0 ∈ Comp(a, b). Clearly, α0 +β0 is
valid as they are both sub-graphs of τ . Since τ ∈ Rep(a), we have V(τ −α0)∩Diff(a) = ∅
according to Def. 3. Note that V(β0−α0) ⊆ V(τ−α0), we can deduce V(β0−α0)∩Diff(a) =
∅. Similarly, we have V(α0 − β0) ∩ Diff(b) = ∅. According to Def. 4, it follows that
α0 + β0 ∈ Comp(a, b).

Secondly, we prove that τ ∈ Rep(Comp(a, b)). As α0 + β0 ⊆ τ , it suffices to prove
V(τ−(α0 +β0))∩Diff(Comp(a, b)) = ∅, and we prove this by contradiction. Assume there
exists a vertex V in V(τ − (α0 + β0)) ∩Diff(Comp(a, b)). The fact V ∈ Diff(Comp(a, b))
indicates that V can only lie in Diff(a) ∪Diff(b). Since τ ∈ Rep(a), we have V(τ − α0) ∩
Diff(a) = ∅. Thus, V(τ − (α0 + β0)) ∩Diff(a) ⊆ V(τ − α0) ∩Diff(a) = ∅. Similarly, we
have V(τ − (α0 + β0)) ∩ Diff(b) = ∅. But by assumption, V ∈ V(τ − (α0 + β0)) and
V ∈ Diff(a) ∪ Diff(b), which is a contradiction. So we must have V(τ − (α0 + β0)) ∩
Diff(Comp(a, b)) = ∅. Hence, τ ∈ Rep(Comp(a, b)) and τ ∈ SRep(Comp(a, b)).

To sum up, we have proved Rep(a) ∩ Rep(b) = SRep(Comp(a, b)).

Lem. 2 establishes the relation between the sets SRep(Comp(a, b)) and Rep(a)∩Rep(b).
Our goal is to determine whether |Rep(a) ∩ Rep(b)| is even by counting the subgraphs in
the set Comp(a, b). For this aim, we have the following main theorem.

Theorem 1. Let a = (α0, α1) and b = (β0, β1) be two 2-patterns. If |Comp(a, b)| is even,
then both |Rep(a) ∩ Rep(b)| and |Rep(a) ∪ Rep(b)| are even.

Proof. According to Prop. 2, If |Comp(a, b)| is even, then |SRep(Comp(a, b))| is also
even. Moreover, by Lem. 2, we have that SRep(Comp(a, b)) = Rep(a) ∩ Rep(b). So we
have both |Rep(a) ∩ Rep(b)| and |Rep(a) ∪ Rep(b)| are even.

We emphasize that Theorem 1 only provides a sufficient condition on |Rep(a)∪Rep(b)|
being even. So if |Comp(a, b)| is odd, the number |Rep(a) ∪ Rep(b)| may be odd or not.
But a new question arises, i.e., what if |Comp(a, b)| is odd? One simple method is not
using the 2-pattern a and b simultaneously. As we will find many 2-patterns during the
computations, discarding some does not affect the solving efficiency very much.

3.1.3 How do several 2-patterns work correctly when used simultaneously?

In practical computations, two 2-patterns may still not be adequate to reject as many pairing
trails as we hope. We need more 2-patterns to work simultaneously. Let p0, p1, . . . , pl−1
be l 2-patterns. These 2-patterns work correctly only when the number of trails in
Rep(p0) ∪Rep(p1) ∪ · · · ∪Rep(pl−1) ⊆ Tm is even. We next present a sufficient condition
on |Rep(p0) ∪ Rep(p1) ∪ · · · ∪ Rep(pl−1)| being even. We need another lamma first.

Lemma 3. Let p0, p1, · · · , pl−1(l ≥ 3) be l 2-patterns. If for any two 2-patterns pi and
pj, we have |Comp(pi, pj)| = 4, then |Rep(p0) ∩ Rep(p1) ∩ · · · ∩ Rep(pl−1)| is even.

Proof. Let τ be a trail in Rep(p0) ∩ Rep(p1) ∩ · · · ∩ Rep(pl−1). As τ ∈ Rep(p0), there
exists τ ′ be a dual trail of τ in Rep(p0). We next show τ ′ ∈ Rep(pi) for all 1 ≤ i < l.

As |Comp(p0, pi)| = 4, we suppose p0 = (α0, α1), pi = (β0, β1), α0 + β0 ⊆ τ , and
α1 ⊆ τ ′. Because τ ′ is a dual trail of τ in Rep(p0), α0 + β0 ⊆ τ and |Comp(p0, pi)| = 4,
we have α1 + β0 ⊆ τ ′.

Note that V(τ ′−β0) = V(τ ′− (β0 + α1) + (α1−β0)) ⊆ V(τ ′− (α1 + β0))∪V(α1−β0).
Since τ and τ ′ are dual trails in Rep(p0), we have V(τ ′ − (α1 + β0)) ∩ Diff(pi) =
V(τ − α0 − β0) ∩ Diff(pi) = ∅ due to τ ∈ Rep(pi). Again because of |Comp(p0, pi)| =

52 A New Practical Cube Attack via Recovering Numerous Superpolys

4, α1 is consistent with β0, we have V(α1 − β0) ∩ Diff(pi) = ∅. So in all, we have
V(τ ′ − β0) ∩Diff(pi) ⊆ (V(τ ′ − (α1 + β0)) ∪V(α1 − β0)) ∩Diff(pi) = ∅. Hence, τ ′ lies in
Rep(pi).

Because for any τ ∈ Rep(p0) ∩ Rep(p1) ∩ · · · ∩ Rep(pl−1), there exists τ ′ ∈ Rep(p0) ∩
Rep(p1)∩ · · · ∩Rep(pl−1), the number |Rep(p0)∩Rep(p1)∩ · · · ∩Rep(pl−1)| is even.

Next, we present the second theorem in this paper.

Theorem 2. Let p0, p1, · · · , pl−1(l ≥ 3) be 2-patterns. If the following conditions hold

1. For any two 2-patterns pi and pj, the number |Comp(pi, pj)| is even;

2. For any three 2-patterns pi, pj , pk, as most one of V(pi) ∩V(pj), V(pi) ∩V(pk),
and V(pj) ∩V(pk) is non-empty.

Then |Rep(p0) ∪ Rep(p1) ∪ · · · ∪ Rep(pl−1)| is even.

Proof. Based on Cor. 1, the number |Rep(p1)|, |Rep(p2)|, · · · , |Rep(pl)| are all even. For
any two 2-patterns pi and pj , the |Comp(pi, pj)| is even means that |Rep(pi) ∩ Rep(pj)|
is even by Theorem 1.

Now, consider the case of r 2-patterns p0, p1, · · · , pr−1(3 ≤ r ≤ l), and we want to
prove |Rep(p0) ∩ Rep(p1) ∩ · · · ∩ Rep(pr−1)| is even.

Clearly, if there exists pi and pj such that |Comp(pi, pj)| = 0 and 0 ≤ i < j ≤ r, then
Rep(pi) ∩ Rep(pj) = ∅ and |Rep(p0) ∩ Rep(p1) ∩ · · · ∩ Rep(pr−1)| = 0. So next, we only
need to consider the case that for any pi and pj , we have |Comp(pi, pj)| ≠ 0.

Another simple case is that if for any two 2-patterns pi and pj , |Comp(pi, pj)| = 4,
then |Rep(p0) ∩ Rep(p1) ∩ · · · ∩ Rep(pr−1)| is even by Lem. 3.

The last unproved case is that there exist two 2-pattern pi and pj such that the number
|Comp(pi, pj)| = 2. Similar to the proof in Lem. 3, we assume τ ∈ Rep(p0)∩Rep(p1)∩· · ·∩
Rep(pr−1), and we try to construct a τ ′ such that τ ′ ∈ Rep(p0)∩Rep(p1)∩· · ·∩Rep(pr−1),
then this case is also proved.

Assume |Comp(p0, p1)| = 2, and there are two compsite graphs γ0 and γ1 in Comp(p0, p1).
We assume γ0 ⊆ τ , and then denote τ ′ be the graphs τ − γ0 + γ1. Clearly we have
τ ′ ∈ Rep(p0) ∩ Rep)p1)| by the construction of τ ′. It suffices to show τ ′ ∈ Rep(pi)
for 2 ≤ i < r. The proof is quite similar to Lem 3’s proof. The only difference
is that αi becomes γi. Note that by the second condition of the theorem, we have
|Comp(p0, pi)| = |Comp(p1, pi)| = 4, so both γ0 and γ1 are consistent with the subgraphs
in pi. Next, we can use a similar proof as done in Lem. 3 to show that if τ ∈ Rep(pi),
then τ ′ ∈ Rep(pi) holds too. It follows that τ ′ ∈ Rep(p0) ∩ Rep(p1) ∩ · · · ∩ Rep(pr−1),
and hence, |Rep(p0) ∩ Rep(p1) ∩ · · · ∩ Rep(pr−1)| is even.

To sum up, we have proved |Rep(p0)∩Rep(p1)∩ · · · ∩Rep(pr−1)| is even for 3 ≤ r ≤ l.
By the principle of inclusion-exclusion, |Rep(p0) ∪Rep(p1) ∪ · · · ∪Rep(pl−1)| is even.

Theorem 1 and 2 solve the second and third problems proposed in the front of this
section by providing sufficient conditions on ensuring |Rep(a) ∪ Rep(b)| and |Rep(p0) ∪
Rep(p1) ∪ · · · ∪ Rep(pl−1)| being even. These conditions can easily be conducted without
solving the model. So, to use more 2-patterns to reject useless trails, the remaining problem
is how to obtain the 2-patterns, which will be solved in the next subsection.

3.2 Algorithm
In this subsection, we first present an algorithm for extracting 2-patterns from given trails.
Next, we provide an algorithm for selecting 2-patterns from the candidates to meet the
conditions of Theorem 2. Finally, we provide an algorithm for recovering superpolys,
automatically finding and exploiting new 2-patterns to reject useless trails.

Min Zhang and Yao Sun 53

3.2.1 Extracting 2-patterns from trails

The idea of this algorithm is simple. Given two trails related to the same monomial, they
form a large 2-pattern naturally since the vertexes at the top and bottom of them are
identical. Our method is to delete the common edges from these two trails if the remaining
graphs, after deleting the edges, also have the same top and bottom vertexes. We repeat
this deleting procedure until no common edges can be deleted anymore.

Algorithm 1: Extracting a 2-pattern from two trails
Input : Two trails τ and τ ′ related to the same monomial.
Output : A 2-pattern a = (α0, α1).

1 begin
2 (α0, α1)←− (τ, τ ′)
3 for e ∈ E(τ) ∩E(τ ′) do
4 if Top(α0 − e) = Top(α1 − e) and Bot(α0 − e) = Bot(α1 − e) then
5 (α0, α1)←− (α0 − e, α1 − e)

6 return (α0, α1)

In Alg. 1, we abuse the graph minus operator “-” for simplification. By writing “α0−e”,
we mean the graph α0 − ({St(e), En(e)}, {e}) = (V(E(α0) \ {e}), E(α0) \ {e}).

3.2.2 Selecting 2-patterns from candidates

Given a set of candidate 2-patterns, there are many ways of selecting 2-patterns such that
conditions of Theorem 2 are met. We use a greedy approach to select as many “small”
2-patterns as possible. We think one 2-pattern is smaller if it involves fewer vertexes. We
have the following algorithm for selecting 2-patterns.

Algorithm 2: Selecting 2-patterns from candidates
Input : A set of candidate 2-patterns {a0, a1, · · · , am−1}.
Output : A set of 2-patterns {p0, p1, · · · , pl−1} such that

(1) |Comp(pi, pj)| is even for 0 ≤ i < j < l;
(2) as most one of V(pi) ∩V(pj), V(pi) ∩V(pk), and V(pj) ∩V(pk) is
non-empty for 0 ≤ i < j < k < l.

1 begin
2 T ←−{a0, a1, · · · , am−1}
3 D←−∅ # selected 2-patterns
4 while T ̸= ∅ do
5 a←− a 2-pattern with the least vertexes in T
6 T ←−T \ {a}
7 f←−True
8 if ∃p ∈ D s.t. |Comp(a, p)| is odd then
9 f←−False

10 if ∃p, p′ ∈ D s.t. V(p) ∩V(p′) ̸= ∅ and (V(p) ∪V(p′)) ∩V(a) ̸= ∅ then
11 f←−False

12 if f = True then
13 D←−D ∪ {a}

14 return D

54 A New Practical Cube Attack via Recovering Numerous Superpolys

Algorithm 3: A new algorithm for recovering superpolys
Input : A graph-based MILP model M built for recovering a superpoly.
Output : Trails corresponding to the monomials in the superpoly.

1 begin
2 T ←−{M} # unsolve models
3 S←−∅ # trails of the models
4 C←−∅ # candidate 2-patterns
5 P ←−∅ # selected 2-patterns
6 while T ̸= ∅ do
7 M′←− an unsolved model in T
8 T ←−T \ {M′}
9 solve M′ by adding the constraints of 2-patterns in P

10 if M′ cannot be solved after obtaining 100000 trails then
11 extract 2-patterns from the obtained trails, and append the 2-patterns

to C
12 split M′ into sub-models, and append them to T

13 else
14 extract 2-patterns from the obtained trails, and append the 2-patterns

to C
15 append trails to S

16 P ←− select 2-patterns from C

17 return S

3.2.3 A new graph-based algorithm for recovering superpolys

As we hope to find new 2-patterns and use them to reject pairing trails in the subsequent
computations, the graph-based model cannot be solved as a whole; otherwise, the found
2-patterns will be useless. Thus, we split the original graph-based algorithm into several
sub-models and solve them not at the same time. Our split strategy is trivial. That is,
we solve one sub-model first, and if the model cannot be solved completely after finding
more than 100000 trails, then we split the model into sub-models. Since each vertex in the
graph-based model only has four edges, and at most one edge is valid, we enumerate the
possible cases to generate four submodels.

Whenever we obtain some trails of the submodels, we extract the 2-patterns from these
trails and select a set of 2-patterns such that the conditions in Theorem 2 are met. These
2-patterns are added to the consequent unsolved models to reject possible pairing trails.

Please note that in Line 11, although the model M′ is not solved completely, we can
also extract 2-patterns from the obtained trails related to the same monomials.

In our experiments, we also implemented this algorithm in parallel to speed up Alg. 3
further. We use multi-threads to solve the sub-models, respectively, and the sets C and P
are shared among these threads.

4 A New Practical Cube Attack via Numerous Superpolys
The cube attack consists of two phases: the offline phase and the online phase. In the
offline phase, the attackers “generate” superpolys, while in the online phase, the evaluations
of superpolys are assumed to be available, so the superpolys become a system of equations.
To get the secret key of the cipher, the attackers need to solve the system constructed
by the superpolys. To make the system easier to solve, previous practical cube attacks

Min Zhang and Yao Sun 55

try to search for some “good” superpolys, for example, linear superpolys or superpolys
with balanced bits. This makes the system easy to solve but increases the difficulty of
generating superpolys.

Unfortunately, it becomes challenging to find sufficient good superpolys when the round
number of stream ciphers is high. To mount the cube attacks to a higher number of rounds,
we prefer using numerous “not-so-good” superpolys. Here, “not so good” superpolys refer
to the ones that are not linear or not balanced at all. Generally, the system constructed
by these “not so good” superpolys is hard to solve. However, we noticed that superpolys
corresponding to stream ciphers, e.g. Trivium, are often “sparse” and “asymmetrical” in
variables, and if the number of these superpolys is “adequate” enough, then the system
becomes easy to solve. Here, “sparse” means the numbers of monomials in the superpolys
are not huge, and the “asymmetry” of variables refers to the fact that some secret variables
may appear in most of the superpolys, but some other variables only appear in a few
superpolys. This asymmetry will help us to determine the guessing order of variables later.
By saying “adequate” superpolys, we mean that the system becomes easier to solve only
when there are a large number of superpolys. For example, when we attacked 832-round
Triviumif all 1373 superpolys were used, the solution of the system could often be found
in seconds, but if only 500 ones were used, the system sometimes could not be solved.

Actually, if there is a system constructed by adequate, sparse, and asymmetrical
superpolys, one direct way of solving this system is to use a solver, e.g., the SAT solver or
the Gröbner basis method. However, we found that the system cannot be solved within a
durable time for some selected keys in our experiment. Besides, the complexity of using
the SAT or the Gröbner basis method directly are complicated to analyze. So we prefer a
“testing method” for solving the systems. Specifically, we guess the value of a key, say x0
and check whether a contradiction occurs in the system. If x0 = 1 leads to a contradiction,
then we must have x0 = 0. The idea is very efficient in our experiments, and most of the
values of the keys can be determined in this way.

Next, we show the new cube attack in more detail.
Offline Phase: The first step is to search for a “good” mother cube such that the
superpolys of the sub-cubes of this mother cube are sparse. The second step is to recover
numerous superpolys of the sub-cubes. This “good” mother cube is not very difficult to
find because we only require it to be sparse. Once the mother cube is determined, a large
amount of superpolys of its sub-cubes are recovered. According to our experiences, 1200
superpolys should be adequate for conducting a practical attack.
Online Phase: The values of the superpolys can be determined by inquiring about the
oracle, and the number of inquiries depends on the size of the mother cube. Next, we
obtain the true values of some secret variables by using a testing method, and the values
of the undetermined secret variables can be obtained by enumeration.
The complexity of this attack Assume the size of the mother cube is s. We can
obtain the true values of m secret variables by the testing method, and there are n−m
undetermined variables. If the testing method can be finished quickly, then it takes about
2s + 2(n−m) inquiries about the oracle to solve for the true key.

Note that the testing method for determining the values of the variables is the most
crucial step in this attack. This method is given by the following algorithm.

Here are some explanations on Alg. 4.

1. The step in Line 6 is important to the testing method. Any solver of polynomial
systems can be used here in theory. In early experiments, we used the CryptoMiniSat
solver [SNC09]. Later, we noticed that the “groebner_basis()” function in Singuar
(ver 4.4.0) [DGPS24] is more efficient than CryptoMiniSat for practical testing.

2. In the practical attacks, the solving in Line 6 takes not too much time. For example, to
conduct a key-recovery attack against 832-round Trivium, we used 1373 superpolys.

56 A New Practical Cube Attack via Recovering Numerous Superpolys

Algorithm 4: A testing method for solving the system
Input : A large set F of superpoly equations, e.g. F = {p0 = 1, p1 = 0, . . .}.
Output : A solution to F , e.g. {k0 = 1, k1 = 0, . . . , kn−1 = 1}.

1 begin
2 R←−∅ # a set of equations recording the determined key values.
3 U←−{k0, k1, . . . , kn−1} # the set containing all secret variables
4 for k ∈ U do
5 for v ∈ {0, 1} do
6 solve the system F ∪R ∪ {k = v} by a solver
7 if there is no solution to the system F ∪R ∪ {k = v} then
8 R←−R ∪ {k = 1− v}
9 U←−U \ {k}

10 for ∀ v ∈ F|U |
2 do

11 # assume U = {u0, u1, . . . , ul−1}
12 if R ∪ {(u0, . . . , ul−1) = v} is a solution to F then
13 return R ∪ {(u0, . . . , ul−1) = v}

Testing the values of the 80 secret variables takes about 8 ∼ 9 hours by using an
ordinary PC. The values of about 77 variables on average can be determined, which
means recovering the key completely can be done practically by enumerating the
values of the other 3 variables.

3. The asymmetry of the superpolys speeds up the solving in Line 6. Take the attack
on 832-round Trivium as an example. There are 1373 superpolys in total, and all
80 key variables appear. But k58 appears in 1344 superpolys, k59 in 1307 ones, . . .,
k9 in 23 ones. We used this asymmetry to determine the testing order, i.e., we test
the variables in the order k58, k59, . . ., k9 Line 4. We found this order sped up the
testing in our experiments compared to some other orders.

4. The sparsity of the superpolys also speeds up the solving in Line 6 because the
sparsity leads to fewer constraints in the SAT solver and also makes the Buchberger
algorithm (in Singular) more efficient.

5. In practical attacks, we used a progressive way to speed up Alg. 4. Specifically, we
generate several subsets of F , say F1 ⊂ F2 ⊂ · · · ⊂ Fm = F . The first set F1 consists
of the simplest superpolys, e.g., superpolys whose numbers of monomials are smaller
than 100. The second set F2 consists of those whose monomial numbers are smaller
than 200. In the test, we check the values of the secret variables with F1 first.
We may obtain the values of some secret variables quickly, and we can preset these
values to the secret variables in F2 and test the values of the undetermined variables.
If F2 is inadequate to determine all the bits of the key, we use the set F3, and so on.
If all the superpolys in F have been used, and there are still some secret variables
that cannot be determined, then we enumerate these secret variables’ values to find
the true target key in Line 10 ∼ 13.

5 Applications to Trivium
We applied the new approach to attacking Trivium practically. Firstly, we tested the
effectiveness of the new proposed Alg. 3 in Sec. 5.1. Next, the new attacks on 820- and

Min Zhang and Yao Sun 57

832-round Trivium are shown in Sec. 5.2.

5.1 Effectiveness of the new 2-patterns
In this section, we test the number of trails rejected by Alg. 3 compared to the original
graph-based models. The goal of rejecting more pairing trails is to speed up the computation
of recovering superpolys, so we also show the timings for each example.

As examples, we use the cubes from [DDGP22] and [CQ23]. Besides, we also use some
sub-cubes that we used to attack 832-round Trivium. The data are shown in Tab. 2
and 3. In the tables, we compare three algorithms, including the original graph-based
algorithm in [DDGP22], our paralleled version of the graph-based algorithm, and Alg. 3.
We present the number of all trails solved from the models, the number of monomials in
the superpolys, and the trails related to the appearing monomials in the superpolys. The
timings are obtained from a platform with AMD Threadripper 3970X with 32 cores and
256 GB memory, running Ubuntu 20.04.

Table 2: Comparisons of the original graph-based algorithm ([DDGP22]), paralleled
graph-based algorithm (Parallel), and the paralleled graph-based algorithm with new
2-patterns (Parallel + Pat.) on recovering the superpolys of 840-, 841-, 842-, and 843-
round Trivium. To test the effectiveness of the optimal 2-patterns, some previously found
optimal 2-patterns were added to these models used by Parallel + Pat. in advance.

Round Alg. Patterns #all trails #mon. #mon. trails Time (sec.)

840
[DDGP22] 3CBP 8025 41 667 309.74
Parallel 3CBP 8025 41 667 295.13

Parallel + Pat. 143 2564 41 373 290.85

841
[DDGP22] 3CBP 18905 55 2617 1796.15
Parallel 3CBP 18905 55 2617 1253.32

Parallel + Pat. 184 2971 55 595 1214.57

842
[DDGP22] 3CBP 720779 975 191435 13941.10
Parallel 3CBP 720779 975 191435 6345.27

Parallel + Pat. 345 322199 975 214719 5435.98

843
[DDGP22] 3CBP − − − >20000
Parallel 3CBP 5658914 359514 1681158 5980.24

Parallel + Pat. 983 3972087 359514 1323591 5190.65

I840 = {0, . . . , 79} \ {70, 72, 74, 76, 78},
I841 = {0, . . . , 79} \ {8, 78},
I842 = {0, . . . , 79} \ {18, 34},
I843 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79}.

From Tab. 2 and Tab. 3, we can see that the parallel version of the graph-based
algorithm is much faster than its original version, and the new algorithm is even more
efficient. The total numbers of trails are significantly reduced in the new algorithm, which
we think is the main reason for the speed-up. The speed-up brought by decreasing the
number of trails is not obvious for simple examples, e.g., the second example in Tab. 3,
but it becomes significant for complicated ones, e.g., the last three examples in Tab. 3.

5.2 A practical attack against 820- and 832-round Trivium
The practical attacks consist of three steps.

The first step is to search for a mother cube with only a few terms and a low degree.
We used some cube indexes in [YT21] and replaced some cube indexes with random. We

58 A New Practical Cube Attack via Recovering Numerous Superpolys

Table 3: Comparisons of the original graph-based algorithm ([DDGP22]), paralleled
graph-based algorithm (Parallel), and the paralleled graph-based algorithm with new
2-patterns (Parallel + Pat.) on recovering the superpolys of 832-round Trivium.

Cube Alg. Patterns #all trails #mon. #mon. trails Time (sec.)

I1

[DDGP22] 3CBP 435185 4917 14431 2259.81
Parallel 3CBP 435185 4917 14431 655.03

Parallel + Pat. 91 26573 4917 7411 196.56

I2

[DDGP22] 3CBP 81666 5184 13092 172.32
Parallel 3CBP 81666 5184 13092 115.89

Parallel + Pat. 51 32616 5184 6132 144.58

I3

[DDGP22] 3CBP 215101 6097 13949 569.85
Parallel 3CBP 215101 6097 13949 281.69

Parallel + Pat. 76 82161 6097 13269 184.95

I4

[DDGP22] 3CBP 1289438 8220 35306 20630.81
Parallel 3CBP 1289438 8220 35306 2715.23

Parallel + Pat. 131 67728 8220 20624 295.97

I5

[DDGP22] 3CBP − − − >20000
Parallel 3CBP 1732002 10636 121068 3504.03

Parallel + Pat. 107 170622 10636 51018 367.17

I6

[DDGP22] 3CBP 915843 10827 149717 10794.13
Parallel 3CBP 915843 10827 149717 1977.31

Parallel + Pat. 265 204497 10827 46635 411.58

I1 = S832 \ {12, 29, 54}, I2 = S832 \ {14, 25, 31, 54}, I3 = S832 \ {1, 29, 55, 68},
I4 = S832 \ {1, 29}, I5 = S832 \ {15, 31, 67}, I6 = S832 \ {29, 31, 73}.

recovered many superpolys using the new algorithm and selected the cube with the lowest
degree. For attacking 820- and 832-round Trivium, we use two mother cubes:

S820 = {1, 3, 5, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 33, 35, 37,
38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 67, 69, 71, 73, 75, 77, 79},

S832 = {0, 1, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 26, 28, 29, 30, 31, 32, 34, 36, 38,
40, 43, 45, 47, 49, 51, 53, 54, 55, 58, 60, 61, 62, 64, 66, 67, 68, 69, 71, 73, 75, 77, 79},

where |S820| = 45 and |S832| = 49.
The second step is to recover numerous superpolys of the sub-cubes using Alg. 3.

Note that Alg. 3 can recover any superpoly if the time and space are unlimited, because
this algorithm keeps splitting the sub-models until the sub-models can eventually be solved.
For the sake of efficiency, we set a limit on the running time in the practical attacks.
That is, we cut down the program if the superpoly was not recovered completely within
7200 seconds. Finally, we obtained 1912 superpolys of the sub-cubes of S820, and 1373
ones for the 832-round Trivium. The implementation of Alg. 3 is based on the Gurobi
solver [Gur24].

The statistics of the features of the superpolys are shown as follows.

Table 4: The number of superpolys of different sizes of cubes.
Round Cube size 38 39 40 41 42 43 44 45 46 47 48 49

820 #S.polys 1 68 406 572 634 201 29 1
832 #S.polys 137 420 369 321 104 21 1

In Tab. 4, most of the superpolys used for attacking 820-round Trivium come from
the sub-cubes of size 40, 41, and 42. We think this phenomenon results from two reasons.

Min Zhang and Yao Sun 59

Firstly, the number of sub-cubes with sizes 43 and 44 is limited, so the number of superpolys
related to these sub-cubes is small. Secondly, the algebraic degrees of the superpolys
corresponding to the cube sizes smaller than 39 are usually high, so we did not recover many
of them. A similar phenomenon also happens to the superpolys for attacking 832-round
Trivium.

0 20000 40000 60000 80000 100000 120000 140000
#Monomials

0

100

200

300

400

500

600

700

#S
up

er
po

ly
s

67
5

28
1

20
4

13
1

10
5

83
65

46 53
37 26 30 20 15 10 10 16 11 10 17 6 4 8 8 6 2 1 2 2 2 4 3 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1

#Monomials=142282

(a) The number of monomials of superpolys for
attacking 820-round Trivium.

0 50000 100000 150000 200000 250000
#Monomials

0

100

200

300

400

500

#S
up

er
po

ly
s

52
3

17
7

12
9

88
71

46 54
31 37

26 19 18 12 17 16 10 10 13 11 6 7 6 3 2 2 4 1 5 3 1 5 4 1 1 2 1 3 1 1 1 1 1 2 1

#Monomials=278439

(b) The number of monomials of superpolys for
attacking 832-round Trivium.

Figure 4: The distributions of monomials in superpolys.

Fig. 4 presents the distributions of the numbers of monomials. Most of the superpolys
used for practical attacks contain small numbers of monomials. The largest superpolys for
attacking 820-and 832-round Trivium have 142282 and 278429 monomials, respectively.
Besides, the degrees of 1205 superpolys used for attacking 832-round Trivium are not
smaller than 10.

0.0 0.1 0.2 0.3 0.4 0.5
Balance

0

50

100

150

200

250

#S
up

er
po

ly
s

3 9 3
11 7 10

17
9 9 101214

21
28

1410141516171412
262727

36
293436

21
32

4745
3433

23

575247
39

4947
55556159

98
107

208

253

(a) The distributions of the balance of super-
polys for attacking 820-round Trivium.

0.0 0.1 0.2 0.3 0.4 0.5
Balance

0

20

40

60

80

100

120

#S
up

er
po

ly
s

20

4447
51

30
24

37
31

26

15

27
20

12

24
17

10
1411

1518
141619201917

21
1512

28

1616

35

2124
17

2727

16
221920

25
21

25

34

5554

96

129

(b) The distributions of the balance of super-
polys for attacking 832-round Trivium.

Figure 5: The distributions of the balance of superpolys.

The distributions of the balance of superpolys are shown in Fig. 5. We cannot obtain
the rigorous balance value of each superpoly because there are 80 variables, so we calculate
a rough balance value by assigning 10000 random values to each superpoly. Many of the
superpolys used for practical attacks have good balance values.

All these recovered superpolys were used in our practical attack. Not every superpoly
involves all 80 key variables, but each key variable appears in some superpolys. Fig. 6 shows
that the numbers of appearing times of the key variables are not uniformly distributed,
reflecting the variables’ asymmetry. This asymmetry is used to determine the testing order
of variables in Alg. 4. This order sped up the testing in our experiments compared to
some other orders.

The final step is to solve the system constructed by the obtained superpolys by Alg.
4. The superpolys are fixed in the online phase, but the evaluations of these superpolys are
determined by the specific values of the secret variables. It is impossible to test whether
the systems can be solved by Alg. 4 practically for all keys, so we chose 214 keys for testing
the practical attacks against 820- and 832-round Trivium.

60 A New Practical Cube Attack via Recovering Numerous Superpolys

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Variable
0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f O
cc

ur
re

nc
es

48
7

17
35

21
1

10
88

11
3

32
7

14
1

43
1

37
0

62
7

59
0

12
04

11
19

16
88

18
14

16
86

13
24

88
3

16
78

71
14

76
25

5
36

6
32

1
15

11
14

04
17

86
17

65
17

52
15

92
11

67
16

53
81

6 88
3

24
0

11
86

89
3

15
44

14
34

17
84

17
02

16
77

13
33

18
42

16
81

18
75

14
89

16
35

36
1

11
23

11
28

13
05 13

47 14
04

16
58

16
22

18
26

17
91

18
77

11
73

16
32

28
8

14
68

95
7

15
36

13
41

13
24

10
71

17
96

17
34

18
52

18
11

18
23

13
52

13
50

59
8 61
7

31
2 36

8
26

3

(a) The appearing times of variables in the
superpolys for attacking 820-round Trivium.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Variable
0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f O
cc

ur
re

nc
es 89

9
89

0 94
3

52
5

51
5

13
3

49
9

56
42

7
23

21
9

55
9

94
7

73
8 79

7
76

5
71

0
85

2
36

8
10

34
26

0
94

9
64

45
9

10
45

12
01

11
44

10
89

95
2

92
4

72
7

65
1

12
02

64
2

12
08

51
3

11
99

79
5 85

1
80

7
77

3
62

8
10

58
87

5
12

19
11

59 12
13

11
75

96
7

90
3

75
8

10
63

89
4 94

3
85

6
93

8 95
8

12
16

13
44

13
07

12
78 13

04
12

49
12

05
99

3
69

1
56

5
98

8
11

47
94

2
10

61
10

64
11

79
11

15
12

50
91

1
11

12
95

2
11

21
70

9

(b) The appearing times of variables in the
superpolys for attacking 832-round Trivium.

Figure 6: The appearing times of variables in the superpolys.

In the experiments, we generated random keys and calculated the evaluations of
superpolys. Some bits of the keys were determined using Alg. 4. Specifically, for testing
the value of each variable k, we solved the system Fi ∪R ∪ {k = 0} and Fi ∪R ∪ {k = 1}
in Line 8 of Alg. 4 by the CryptoMiniSat solver [SNC09] or the Gröbner basis function in
Singuar [DGPS24]. This test can be done quickly due to the sparsity of the systems if the
systems have no solutions; otherwise, we stop the program once CryptoMiniSat finds one
solution, or the Gröbner basis cannot return the results within 100 seconds. If the system
Fi ∪R ∪ {k = 0} has no solution, then we can determine that k = 1. The average times of
this step for 820− and 832−round Trivium are about 3 and 9 hours, respectively. The
distributions of the numbers of undetermined bits are shown in Fig. 7. The platform (2 ×
AMD EPYC 7763 64 cores, 2 TB memory) is used to finish these experiments.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 35 38
#Undetermined variables

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f O
cc

ur
re

nc
es

10694

1132

529
237

456 374 283 255 255 210 191 164 127 118 191 164 127 63 63 63 27 91 82 36 45 45 82 51 100 61 25 18 12 9 3 1

(a) The number of undetermined secret vari-
ables for 820-round Trivium.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27 28 29 30 35 37
#Undetermined variables

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f O
cc

ur
re

nc
es

8070

2640

1100

524 609 541 414 372 355 355 287 203 186 143 143 135 33 101 8 33 33 33 42 8 4 2 2 3 3 1 1

(b) The number of undetermined secret vari-
ables for 832-round Trivium.

Figure 7: The number of undetermined secret variables.

From Fig. 7, all 214 tested keys can be recovered completely with no more than 238

or 237 enumerations for 820- and 832-round Trivium, which could be done practically.
Specifically, 65.27% and 49.26% of the target keys can be directly recovered without extra
enumerations; 76.86% and 75.28% of the experiments need to enumerate the values of at
most 3 variables; more than 99% target keys can be recovered by guessing the values of
at most 30 bits. Although we only test a small proportion of the key space 280, we are
confident that our new attack has practical significance in recovering random keys.

In all, the overall time complexities of attacking 820- and 832-round Trivium are about
245 + 238 and 249 + 237.

Remark We found both the SAT and GB methods cannot solve all the systems directly
w.r.t. the keys selected in our experiments. Specifically, they cannot solve the systems with
more than 30 undetermined variables in Fig. 7. However, Alg. 4 could obtain all target key
values practically. Besides, the complexities of using SAT/GB directly are complicated to
analyze. In our attack, if the values of m variables are determined, enumerating the values

Min Zhang and Yao Sun 61

of the other 80−m variables will obtain the true key. In experiments, the testing approach
only costs a few hours, so the complexity of Alg. 4 is dominated by the enumeration
complexity 2(80−m), which is slightly clearer.

6 Conclusions
In this paper, we propose a new cube attack by using numerous superpolys. To recover
these numerous superpolys, we improved Delaune et al.’s graph-based model by using
more 2-patterns to reject useless pairing trails, and experimental data show our technique
did improve the efficiency of recovering superpolys. Using these numerous, sparse, and
asymmetric superpolys, we obtain practical attacks against 820- and 832-round Trivium.
Although we cannot prove our attack is valid to all keys in theory, we believe it is very
useful and practical. Our attacks and algorithms for recovering superolys can be applied
to attack other stream ciphers directly.

Acknowledgments
We would like to thank the anonymous reviewers for their constructive comments. This
work was supported by the National Key R&D Program of China (2023YFA1009500) and
the fund of the Laboratory for Advanced Computing and Intelligence Engineering.

References
[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube

Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium.
In Orr Dunkelman, editor, Fast Software Encryption, pages 1–22, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[CQ23] Junjie Cheng and Kexin Qiao. Improved Graph-Based Model for Recovering
Superpoly on Trivium. In Mike Rosulek, editor, Topics in Cryptology – CT-RSA
2023, pages 225–251, Cham, 2023. Springer International Publishing.

[CT23] Cheng Che and Tian Tian. An Experimentally Verified Attack on 820-Round
Trivium. In Yi Deng and Moti Yung, editors, Information Security and
Cryptology, pages 357–369, Cham, 2023. Springer Nature Switzerland.

[DCP08] Christophe De Cannière and Bart Preneel. Trivium, pages 244–266. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[DDGP22] Stéphanie Delaune, Patrick Derbez, Arthur Gontier, and Charles Prud’homme.
A Simpler Model for Recovering Superpoly on Trivium. In Riham AlTawy
and Andreas Hülsing, editors, Selected Areas in Cryptography, pages 266–285,
Cham, 2022. Springer International Publishing.

[DGPS24] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann.
Singular 4-4-0 — A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de, 2024.

[DKR97] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block cipher Square. In
Eli Biham, editor, Fast Software Encryption, pages 149–165, Berlin, Heidelberg,
1997. Springer Berlin Heidelberg.

http://www.singular.uni-kl.de

62 A New Practical Cube Attack via Recovering Numerous Superpolys

[DMP+15] Itai Dinur, Paweł Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michał
Straus. Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-
Reduced Keccak Sponge Function. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, pages 733–761, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials.
In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages
278–299, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[DS11] Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks.
In Antoine Joux, editor, Fast Software Encryption, pages 167–187, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[FV14] Pierre-Alain Fouque and Thomas Vannet. Improving Key Recovery to 784
and 799 Rounds of Trivium Using Optimized Cube Attacks. In Shiho Moriai,
editor, Fast Software Encryption, pages 502–517, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[Gur24] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024.

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for Three-Subset Division Property Without Unknown Subset. In
Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EURO-
CRYPT 2020, pages 466–495, Cham, 2020. Springer International Publishing.

[HST+21] Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, and Qingju Wang. Massive
superpoly recovery with nested monomial predictions. Cryptology ePrint
Archive, Report 2021/1225, 2021. https://ia.cr/2021/1225.

[KW02] Lars Knudsen and David Wagner. Integral Cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, Fast Software Encryption, pages 112–127, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[Lai94] Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis, pages
227–233. Springer, Boston, MA., 1994.

[LHHW24] Hao Lei, Jiahui He, Kai Hu, and Meiqin Wang. More Balanced Polynomials:
Cube Attacks on 810- And 825-Round Trivium with Practical Complexities.
In Claude Carlet, Kalikinkar Mandal, and Vincent Rijmen, editors, Selected
Areas in Cryptography – SAC 2023, pages 3–21, Cham, 2024. Springer Nature
Switzerland.

[PJ12] Mroczkowski Piotr and Szmidt Janusz. The cube attack on stream cipher
trivium and quadraticity tests. Fundamenta Informaticae, 114(3-4):309–318,
2012.

[SBD+16] Md Iftekhar Salam, Harry Bartlett, Ed Dawson, Josef Pieprzyk, Leonie Simp-
son, and Kenneth Koon-Ho Wong. Investigating Cube Attacks on the Au-
thenticated Encryption Stream Cipher ACORN. In Lynn Batten and Gang
Li, editors, Applications and Techniques in Information Security, pages 15–26,
Singapore, 2016. Springer Singapore.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to
cryptographic problems. In Oliver Kullmann, editor, Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009,
Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture
Notes in Computer Science, pages 244–257. Springer, 2009.

https://ia.cr/2021/1225

Min Zhang and Yao Sun 63

[Sun21] Yao Sun. Automatic search of cubes for attacking stream ciphers. IACR
Transactions on Symmetric Cryptology, 2021, Issue 4:100–123, 2021.

[SWW17] Ling Sun, Wei Wang, and Meiqin Wang. Automatic Search of Bit-Based Divi-
sion Property for ARX Ciphers and Word-Based Division Property. In Tsuyoshi
Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT
2017, pages 128–157, Cham, 2017. Springer International Publishing.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube Attacks
on Non-Blackbox Polynomials Based on Division Property. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages
250–279, Cham, 2017. Springer International Publishing.

[TM16] Yosuke Todo and Masakatu Morii. Bit-Based Division Property and Applica-
tion to Simon Family. In Thomas Peyrin, editor, Fast Software Encryption,
pages 357–377, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[Tod15] Yosuke Todo. Structural Evaluation by Generalized Integral Property. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EU-
ROCRYPT 2015, pages 287–314, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[WHT+18] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and
Willi Meier. Improved Division Property Based Cube Attacks Exploiting Al-
gebraic Properties of Superpoly. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, pages 275–305, Cham, 2018.
Springer International Publishing.

[WQW23] Jianhua Wang, Lu Qin, and Baofeng Wu. Correlation Cube Attack Revisited.
In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT
2023, pages 190–222, Singapore, 2023. Springer Nature Singapore.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP Method to Searching Integral Distinguishers Based on Division Property
for 6 Lightweight Block Ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology – ASIACRYPT 2016, pages 648–678, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[YT21] Chen-Dong Ye and Tian Tian. A Practical Key-Recovery Attack on 805-
Round Trivium. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances
in Cryptology – ASIACRYPT 2021, pages 187–213, Cham, 2021. Springer
International Publishing.

	Introduction
	Preliminaries
	Cube attack
	Trivium
	Graph
	Graph-based model for Trivium

	A New Graph-based Model for Recovering Superpolys
	Theory
	Algorithm

	A New Practical Cube Attack via Numerous Superpolys
	Applications to Trivium
	Effectiveness of the new 2-patterns
	A practical attack against 820- and 832-round Trivium

	Conclusions

