INe

Multimixer-128: Universal Keyed Hashing Based
on Integer Multiplication

Koustabh Ghosh, Parisa Amiri Eliasi, Joan Daemen
Radboud University, Nijmegen, the Netherlands
FSE presentation

March 25, 2024

1/12



Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that

2/12



Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that

® Compress variable-length inputs to a fixed sized state under a secret key

2/12



Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that
® Compress variable-length inputs to a fixed sized state under a secret key

e Keyed hash functions can be used to build

2/12



Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that
® Compress variable-length inputs to a fixed sized state under a secret key
e Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei

2/12



Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that
® Compress variable-length inputs to a fixed sized state under a secret key
e Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei
® Doubly-extendable cryptographic keyed (deck) functions pse-+1s]

2/12



Keyed hash functions

Keyed hash functions are a class of cryptographic primitives that

® Compress variable-length inputs to a fixed sized state under a secret key

Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei
® Doubly-extendable cryptographic keyed (deck) functions pse-+1s]

The security of a keyed hash function Fk is determined by its universality [stios:

2/12



Keyed hash functions

Keyed hash functions are a class of cryptographic primitives that

® Compress variable-length inputs to a fixed sized state under a secret key

Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei
® Doubly-extendable cryptographic keyed (deck) functions pse-+1s]

The security of a keyed hash function Fk is determined by its universality [stios:
® fk is e-universal = V M # M*, Pr[Fx(M) = Fx(M*)] < ¢

2/12



Keyed hash functions

Keyed hash functions are a class of cryptographic primitives that

® Compress variable-length inputs to a fixed sized state under a secret key

Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei
® Doubly-extendable cryptographic keyed (deck) functions pse-+1s]

The security of a keyed hash function Fk is determined by its universality [stios:
® fk is e-universal = V M # M*, Pr[Fx(M) = Fx(M*)] < ¢
® Fk is e-Auniversal = V M # M*, Pr[Fx(M) — Fx(M*) = A] < ¢

2/12



The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

3/12



The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

® That are efficient for software platforms

3/12



The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128
® That are efficient for software platforms

® QOur design strategy: Parallelization of a public function [eho+23],

3/12



The parallel construction

Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

3/12



The parallel construction

Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...

3/12



The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with

3/12



The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

3/12



The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

K
® The message space is |J G*
=1

3/12



The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

K

® The message space is |J G*
=1

® The digest space is G’

3/12



The parallel construction

Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

K

® The message space is |J G*
=1

® The digest space is G’

® For a message M = (Mo, My,..., M\M|—1) and key K = (Ko, Ki..., K,Q_l),

3/12



The parallel construction

Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

K

® The message space is |J G*
=1

® The digest space is G’

® For a message M = (Mo, My,..., M\M|—1) and key K = (Ko, Ki..., K,Q_l),
* M+ K= (M + Ko, M1 +Ki,..., Mm—1 + Kjm|-1)

3/12



The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
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® For a message M = (Mo, My,..., M\M|—1) and key K = (Ko, Ki..., K,Q_l),
* M+ K= (M + Ko, M1 +Ki,..., Mm—1 + Kjm|-1)
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Parallel [f]
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Figure: The parallelization of f: Parallel [f] [Fro23)
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Parallel [f] is max{MDP¢, MIP¢ }-Auniversal [cho+23]
Obtaining universality of Parallel [f] is reduced to obtaining MDP¢ and MIP¢

Universality not only takes into account messages of equal length,

But also messages of variable length
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(kaim)—25 kojmi-1)

Figure: NHk[x, w] = Parallel [M[w]] y
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And is the fastest option for keyed hashing on our target platforms
A mode is defined on top of NHJ [k, 32,4] to

® Handle messages of arbitrary length

® Ensure that universality bound holds in case of messages of variable length
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We analyze security of NHk[x, w] in the parallelized public function framework

This reduces the problem to obtaining the values of MIP .1 and MDP
We obtain MIP ) < 2=w+l and MDP g = 27"

This means that NH[#, 32, 4] is 27124~ AUniversal over all messages
® Qur approach also leads to

® A tight upper-bound for maxs DP yy,((a, b), 6)

® The value of DP((a, b),0)

DP pw is upper-bounded by 27%, but ...

Only for input differences of the type (a,0), (0, a), (a, a), (a, —a)
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M[w] is an excellent choice due to the propagation properties
® We present the public function F-128

Multimixer-128 is simply Parallel [F-128]

F-128: (2/227)* x (2/222)* - (2/2%7)° is defined as
F-128(x,y) = (x ©y,Ny - x ©® N3 - y)

Nq = cire(1,1,1,0) Ng = circ(0,1,1,1)
|><0|X1 X2|><3| |Uo|l/1 Uzlual |yo|y1 y2|y3| V1 Vz
&
| X0Y0 X1y1 | X2Y2 | X3Y3 | uo Vo | upvy | [CY2) u3v3 |

Figure: 7-128, the public function of Multimixer-128
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® Branch number of an n x n matrix N over Z /2" Z: m?ig(w(x) + w(N - x))
X

N, and Ng both have branch number 4

When (a, b) is such that 4 multiplications are active, DPr.105((a, b), A) < 27128
In particular for all a # 0, DP£.18((a,0),0) = DPx.125((0,a),0) = 2128
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® We prove for Z # 0, IP]:_128(Z) < IP]-‘_123(0) = 22256 < 2120 — MIP £.15g

® MDP £.1»g is determined by the number of minimum active multiplications
® The minimum number of active multiplications is determined by N, and Ng

® Branch number of an n x n matrix N over Z /2" Z: m?ig(w(x) + w(N - x))
X

® N, and Ng both have branch number 4

® When (a,b) is such that 4 multiplications are active, DPr.10g((a, b), A) < 27128
® In particular for all a # 0, DP£.12((a,0),0) = DPr.155((0,a),0) = 27128

® For all other differences, DPr.12g((a, b), A) < 27160

® Thus, Multimixer-128 is e-A universal with
£ = mZ:IX{1\/IDP]:_1287 I\/IIP]:_]_QS} =217
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Implementation and Benchmarking Results

# ops.\ per 256-bit input
Algorithm
X | + mod 232 | + mod 264
NHJ[~,32,4] | 16 32 16
Multimixer-128 | 8 20 8

Table: Comparison of # arithmetic operations
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Algorithm
X | + mod 232 | + mod 264
NHJ[~,32,4] | 16 32 16
Multimixer-128 | 8 20 8

Table: Comparison of # arithmetic operations

X # Instructions\ per | Input length in bytes
Algorithm .

256-bit input 512 | 4096 | 32768

NHI[H, 32,4] 16 2.033 | 1.500 | 1.558

Multimixer-128 11 1.830 | 1.233 | 1.396

Table: Performance on 32-bit ARMv7 Cortex-A processor in cycles per byte

12/12



Implementation and Benchmarking Results

# ops.\ per 256-bit input

Algorithm
X | + mod 232 | 4+ mod 264
NHJ[~,32,4] | 16 32 16
Multimixer-128 | 8 20 8

Table: Comparison of # arithmetic operations

# Instructions\ per

Input

length in bytes

Algorith
(S 256-bit input 512 | 4096 | 32768
NHJ[+, 32, 4] 16 2.033 | 1.500 | 1.558

Multimixer-128 11 1.830 | 1.233 | 1.396

Table: Performance on 32-bit ARMv7 Cortex-A processor in cycles per byte

Thank you for your attention!
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