INe

Multimixer-128: Universal Keyed Hashing Based
on Integer Multiplication

Koustabh Ghosh, Parisa Amiri Eliasi, Joan Daemen
Radboud University, Nijmegen, the Netherlands
FSE presentation

March 25, 2024

1/12

Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that

2/12

Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that

® Compress variable-length inputs to a fixed sized state under a secret key

2/12

Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that
® Compress variable-length inputs to a fixed sized state under a secret key

e Keyed hash functions can be used to build

2/12

Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that
® Compress variable-length inputs to a fixed sized state under a secret key
e Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei

2/12

Keyed hash functions

e Keyed hash functions are a class of cryptographic primitives that
® Compress variable-length inputs to a fixed sized state under a secret key
e Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei
® Doubly-extendable cryptographic keyed (deck) functions pse-+1s]

2/12

Keyed hash functions

Keyed hash functions are a class of cryptographic primitives that

® Compress variable-length inputs to a fixed sized state under a secret key

Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei
® Doubly-extendable cryptographic keyed (deck) functions pse-+1s]

The security of a keyed hash function Fk is determined by its universality [stios:

2/12

Keyed hash functions

Keyed hash functions are a class of cryptographic primitives that

® Compress variable-length inputs to a fixed sized state under a secret key

Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei
® Doubly-extendable cryptographic keyed (deck) functions pse-+1s]

The security of a keyed hash function Fk is determined by its universality [stios:
® fk is e-universal = V M # M*, Pr[Fx(M) = Fx(M*)] < ¢

2/12

Keyed hash functions

Keyed hash functions are a class of cryptographic primitives that

® Compress variable-length inputs to a fixed sized state under a secret key

Keyed hash functions can be used to build

® Message authentication code (mac) functions [wcei
® Doubly-extendable cryptographic keyed (deck) functions pse-+1s]

The security of a keyed hash function Fk is determined by its universality [stios:
® fk is e-universal = V M # M*, Pr[Fx(M) = Fx(M*)] < ¢
® Fk is e-Auniversal = V M # M*, Pr[Fx(M) — Fx(M*) = A] < ¢

2/12

The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

3/12

The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

® That are efficient for software platforms

3/12

The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128
® That are efficient for software platforms

® QOur design strategy: Parallelization of a public function [eho+23],

3/12

The parallel construction

Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

3/12

The parallel construction

Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...

3/12

The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with

3/12

The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

3/12

The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

K
® The message space is |J G*
=1

3/12

The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

K

® The message space is |J G*
=1

® The digest space is G’

3/12

The parallel construction

Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

K

® The message space is |J G*
=1

® The digest space is G’

® For a message M = (Mo, My,..., M\M|—1) and key K = (Ko, Ki..., K,Q_l),

3/12

The parallel construction

Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

K

® The message space is |J G*
=1

® The digest space is G’

® For a message M = (Mo, My,..., M\M|—1) and key K = (Ko, Ki..., K,Q_l),
* M+ K= (M + Ko, M1 +Ki,..., Mm—1 + Kjm|-1)

3/12

The parallel construction

® Our goal: Design e-Auniversal keyed hash function with ¢ ~ 27128

That are efficient for software platforms

Our design strategy: Parallelization of a public function [eho+23],

Which is the generalization of the parallelization of a public permutations [Fros]

From a public function f: G — G’ ...
A keyed hash function F = Parallel [f] can be built with
® The key space is G*

K

® The message space is |J G*
=1

® The digest space is G’

® For a message M = (Mo, My,..., M\M|—1) and key K = (Ko, Ki..., K,Q_l),
* M+ K= (M + Ko, M1 +Ki,..., Mm—1 + Kjm|-1)
o F(M) = F(M +K)
3/12

Parallel [f]

Mo M, Mim| -2 Mim|-1
g N
f f f f
& - -® ~O— h

Figure: The parallelization of f: Parallel [f] [Fro23)

4/12

Universality of Parallel [f]

® For the fixed length public function f ...

5/12

Universality of Parallel [f]

® For the fixed length public function f ...
® The DP of a differential (A, A) is: DPf(A, A) = #HXECICAADTO=A]

5/12

Universality of Parallel [f]

® For the fixed length public function f ...
® The DP of a differential (A, A) is: DPf(A, A) = #HXECICAADTO=A]
® The IP of any output Z of f is: IP¢(Z) = W

5/12

Universality of Parallel [f]

® For the fixed length public function f ...
® The DP of a differential (A, A) is: DPf(A, A) = #HXECICAADTO=A]
® The IP of any output Z of f is: IP¢(Z) = W
® The maximum possible value of DP¢ and IP¢ are denoted as:

5/12

Universality of Parallel [f]

® For the fixed length public function f ...
® The DP of a differential (A, A) is: DPf(A, A) = #HXECICAADTO=A]
® The IP of any output Z of f is: IP¢(Z) = W
® The maximum possible value of DP¢ and IP¢ are denoted as:
e MDP; = DP¢(A, A
7S JUEES (A, A)

5/12

Universality of Parallel [f]

® For the fixed length public function f ...
® The DP of a differential (A, A) is: DPf(A, A) = #HXECICAADTO=A]
® The IP of any output Z of f is: IP¢(Z) = W
® The maximum possible value of DP¢ and IP¢ are denoted as:
® MDPs = /L\n;;g,xA DP¢(A, A)
® MIP; = mZaxIPf(Z)

5/12

Universality of Parallel [f]

® For the fixed length public function f ...
® The DP of a differential (A, A) is: DPf(A, A) = #HXECICAADTO=A]
® The IP of any output Z of f is: IP¢(Z) = W
® The maximum possible value of DP¢ and IP¢ are denoted as:
® MDPs = /L\n;;g,xA DP¢(A, A)
® MIP; = mZaxIPf(Z)

® Parallel [f] is max{MDP¢, MIP¢ }-Auniversal [cho+23

5/12

Universality of Parallel [f]

® For the fixed length public function f ...
® The DP of a differential (A, A) is: DPf(A, A) = #HXECICAADTO=A]
® The IP of any output Z of f is: IP¢(Z) = W
® The maximum possible value of DP¢ and IP¢ are denoted as:
® MDPs = /L\n;;g,xA DP¢(A, A)
® MIP; = mZaxIPf(Z)

® Parallel [f] is max{MDP¢, MIP¢ }-Auniversal [cho+23
® Obtaining universality of Parallel [f] is reduced to obtaining MDP¢ and MIP¢

5/12

Universality of Parallel [f]

® For the fixed length public function f ...
® The DP of a differential (A, A) is: DPf(A, A) = #HXECICAADTO=A]
® The IP of any output Z of f is: IP¢(Z) = W
® The maximum possible value of DP¢ and IP¢ are denoted as:
® MDPs = An;g,)Z DP¢(A, A)
® MIP; = mZaxIPf(Z)

® Parallel [f] is max{MDP¢, MIP¢ }-Auniversal [cho+23
® Obtaining universality of Parallel [f] is reduced to obtaining MDP¢ and MIP¢

® Universality not only takes into account messages of equal length,

5/12

Universality of Parallel [f]

® For the fixed length public function f ...
® The DP of a differential (A, A) is: DPf(A, A) = #HXECICAADTO=A]
® The IP of any output Z of f is: IP¢(Z) = W
® The maximum possible value of DP¢ and IP¢ are denoted as:
® MDPs = An;g,)Z DP¢(A, A)
® MIP; = mZaxIPf(Z)

Parallel [f] is max{MDP¢, MIP¢ }-Auniversal [cho+23]
Obtaining universality of Parallel [f] is reduced to obtaining MDP¢ and MIP¢

Universality not only takes into account messages of equal length,

But also messages of variable length

5/12

NH[H, W] [Bla+99]

® NH[x, w]: very fast keyed hash function on software with

6/12

NH[H, W] [Bla+99]

® NH[x, w]: very fast keyed hash function on software with
® An even k > 2 (blocksize) and w > 1 (wordsize)

6/12

NH[I{, W] [Bla+99]

® NH[x, w]: very fast keyed hash function on software with
® An even k > 2 (blocksize) and w > 1 (wordsize)

® Performance is due to fast integer multiplication instructions

6/12

NH[I{, W] [Bla+99]

NH([x, w]: very fast keyed hash function on software with

An even k > 2 (blocksize) and w > 1 (wordsize)

Performance is due to fast integer multiplication instructions

NHk[r, w] can be viewed as the parallelization of
Mw]: (Z)2"Z)? = 7.2 Z: (x,y) — x X y

6/12

NH[I{, W] [Bla+99]

NH([x, w]: very fast keyed hash function on software with

An even k > 2 (blocksize) and w > 1 (wordsize)

Performance is due to fast integer multiplication instructions

NHk[r, w] can be viewed as the parallelization of
Mw]: (Z)2"Z)? = 7.2 Z: (x,y) — x X y
For M = (Mo, Mq,..., M|M|,1) with M; = (m2,-, m2,-+1) € (Z/2WZ)2,

6/12

NH[I{, W] [Bla+99]

NH([x, w]: very fast keyed hash function on software with

An even k > 2 (blocksize) and w > 1 (wordsize)

Performance is due to fast integer multiplication instructions

NHk[r, w] can be viewed as the parallelization of

Mw]: (Z)2"Z)? = 7.2 Z: (x,y) — x X y
For M = (Mo, Mq,..., M|M|,1) with M; = (m2,-, m2,-+1) € (Z/2WZ)2,
And K = (Ko, Ki ..., Ky jo_1) with K; = (kai, koit1) € (Z/2"Z)?

6/12

NH[I{, W] [Bla+99]

® NH[x, w]: very fast keyed hash function on software with
® An even k > 2 (blocksize) and w > 1 (wordsize)

Performance is due to fast integer multiplication instructions

NHk[r, w] can be viewed as the parallelization of

Mw]: (Z)2"Z)? = 7.2 Z: (x,y) — x X y
For M = (Mo, Mq,..., M|M|,1) with M; = (m2,-, m2,-+1) € (Z/2WZ)2,
And K = (Ko, Ki ..., Ky jo_1) with K; = (kai, koit1) € (Z/2"Z)?

(mo,m1) — (mz,ms3) (majmj—2, majmj-1)

(kaim)—25 kojmi-1)

Figure: NHk[x, w] = Parallel [M[w]] y
6/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages

7/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages
® NHg,[x, w](M) || ... || NHk, [k, w](M) is 2~ "t-universal

7/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages
® NHg,[x, w](M) || ... || NHk, [k, w](M) is 2~ "t-universal
® But, this requires a tkw-bit key

7/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages
® NHg,[x, w](M) || ... || NHk, [k, w](M) is 2~ "t-universal
® But, this requires a tkw-bit key

® NHX[x, w, t] is 2~ " -universal on equal-length messages, and . ..

7/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages
NHg,[%, w](M) || ... || NHk, ,[x, w](M) is 2~ "t-universal
® But, this requires a tkw-bit key

NH[%, w, t] is 2~ " -universal on equal-length messages, and ...

Only requires 2w(t — 1)-bits of extra key material

7/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages
NHg,[%, w](M) || ... || NHk, ,[x, w](M) is 2~ "t-universal
® But, this requires a tkw-bit key

NH[%, w, t] is 2~ " -universal on equal-length messages, and ...

Only requires 2w(t — 1)-bits of extra key material

So, NH[[k, 32,4] is 2~ *?8_universal requiring only 192-bits of extra key material

7/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages
NHg,[%, w](M) || ... || NHk, ,[x, w](M) is 2~ "t-universal
® But, this requires a tkw-bit key

NH[%, w, t] is 2~ " -universal on equal-length messages, and ...

Only requires 2w(t — 1)-bits of extra key material

So, NH[[k, 32,4] is 2~ *?8_universal requiring only 192-bits of extra key material

And is the fastest option for keyed hashing on our target platforms

7/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages
NHg,[%, w](M) || ... || NHk, ,[x, w](M) is 2~ "t-universal
® But, this requires a tkw-bit key

NH[%, w, t] is 2~ " -universal on equal-length messages, and ...

Only requires 2w(t — 1)-bits of extra key material

So, NH[[k, 32,4] is 2~ *?8_universal requiring only 192-bits of extra key material

And is the fastest option for keyed hashing on our target platforms
A mode is defined on top of NHJ [k, 32,4] to

7/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages
NHg,[%, w](M) || ... || NHk, ,[x, w](M) is 2~ "t-universal
® But, this requires a tkw-bit key

NH[%, w, t] is 2~ " -universal on equal-length messages, and ...

Only requires 2w(t — 1)-bits of extra key material

So, NH[[k, 32,4] is 2~ *?8_universal requiring only 192-bits of extra key material

And is the fastest option for keyed hashing on our target platforms
A mode is defined on top of NHJ [k, 32,4] to

® Handle messages of arbitrary length

7/12

Extending universality of NH

® NHg[k, w] is 2~ %-universal on equal-length messages
NHg,[%, w](M) || ... || NHk, ,[x, w](M) is 2~ "t-universal
® But, this requires a tkw-bit key

NH[%, w, t] is 2~ " -universal on equal-length messages, and ...

Only requires 2w(t — 1)-bits of extra key material

So, NH[[k, 32,4] is 2~ *?8_universal requiring only 192-bits of extra key material

And is the fastest option for keyed hashing on our target platforms
A mode is defined on top of NHJ [k, 32,4] to

® Handle messages of arbitrary length

® Ensure that universality bound holds in case of messages of variable length

7/12

Differential properties of M[w]|

® We analyze security of NHk[r, w] in the parallelized public function framework

8/12

Differential properties of M[w]|

® We analyze security of NHk[r, w] in the parallelized public function framework

® This reduces the problem to obtaining the values of MIP) and MDP .

8/12

Differential properties of M[w]|

® We analyze security of NHk[r, w] in the parallelized public function framework
® This reduces the problem to obtaining the values of MIP) and MDP .
® We obtain MIPy,; < 27%*! and MDP) = 27%

8/12

Differential properties of M[w]|

We analyze security of NHk[x, w] in the parallelized public function framework

This reduces the problem to obtaining the values of MIP) and MDP)
We obtain MIP) < 2=w+l and MDP g = 27"

This means that NHX[x, 32,4] is 2-12*-AUniversal over all messages

8/12

Differential properties of M[w]|

We analyze security of NHk[x, w] in the parallelized public function framework

This reduces the problem to obtaining the values of MIP) and MDP)
We obtain MIP) < 2=w+l and MDP g = 27"

This means that NHX[x, 32,4] is 2-12*-AUniversal over all messages

® Qur approach also leads to

8/12

Differential properties of M[w]|

We analyze security of NHk[x, w] in the parallelized public function framework

This reduces the problem to obtaining the values of MIP) and MDP)
We obtain MIP) < 2=w+l and MDP g = 27"

This means that NHX[x, 32,4] is 2-12*-AUniversal over all messages
® Qur approach also leads to

® A tight upper-bound for maxs DP yy,((a, b), 6)

8/12

Differential properties of M[w]|

We analyze security of NHk[x, w] in the parallelized public function framework

This reduces the problem to obtaining the values of MIP) and MDP)
We obtain MIP) < 2=w+l and MDP g = 27"

This means that NHX[x, 32,4] is 2-12*-AUniversal over all messages
® Qur approach also leads to

® A tight upper-bound for maxs DP yy,((a, b), 6)

® The value of DP((a, b),0)

8/12

Differential properties of M[w]|

We analyze security of NHk[x, w] in the parallelized public function framework

This reduces the problem to obtaining the values of MIP) and MDP)
We obtain MIP) < 2=w+l and MDP g = 27"

This means that NHX[x, 32,4] is 2-12*-AUniversal over all messages
® Qur approach also leads to

® A tight upper-bound for maxs DP yy,((a, b), 6)

® The value of DP((a, b),0)

DP pw is upper-bounded by 27%, but ...

8/12

Differential properties of M[w]|

We analyze security of NHk[x, w] in the parallelized public function framework

This reduces the problem to obtaining the values of MIP .1 and MDP
We obtain MIP) < 2=w+l and MDP g = 27"

This means that NH[#, 32, 4] is 27124~ AUniversal over all messages
® Qur approach also leads to

® A tight upper-bound for maxs DP yy,((a, b), 6)

® The value of DP((a, b),0)

DP pw is upper-bounded by 27%, but ...

Only for input differences of the type (a,0), (0, a), (a, a), (a, —a)

8/12

Number of diferences baselog 2)
3

s mDP((ab).0)

. *Max_d DP((@b).d)
8

7

6

s

4 e—

3 —

2 —

1

0

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Diferential weight

Figure: Upper-bound of maxs DP y16)((a, b),d), DPupie)((a, b),0) vs. Number of differences

9/12

F-128, the public function of Multimixer-128

® M[w] is an excellent choice due to the propagation properties

10/12

F-128, the public function of Multimixer-128

® M[w] is an excellent choice due to the propagation properties
® We present the public function F-128

10/12

F-128, the public function of Multimixer-128

® M[w] is an excellent choice due to the propagation properties
® We present the public function F-128
® Multimixer-128 is simply Parallel [F-128]

10/12

F-128, the public function of Multimixer-128

M[w] is an excellent choice due to the propagation properties
® We present the public function F-128

Multimixer-128 is simply Parallel [F-128]

F-128: (2/227)* x (2/222)* - (2/2%7)° is defined as

10/12

F-128, the public function of Multimixer-128

M[w] is an excellent choice due to the propagation properties
® We present the public function F-128

Multimixer-128 is simply Parallel [F-128]

F-128: (2/227)* x (2/222)* - (2/2%7)° is defined as
F-128(x,y) = (x ©y,Ny - x ©® N3 - y)

10/12

F-128, the public function of Multimixer-128

M[w] is an excellent choice due to the propagation properties
® We present the public function F-128

Multimixer-128 is simply Parallel [F-128]

F-128: (2/227)* x (2/222)* - (2/2%7)° is defined as
F-128(x,y) = (x ©y,Ny - x ©® N3 - y)

Nq = cire(1,1,1,0) Ng = circ(0,1,1,1)
|><0|X1 X2|><3| |Uo|l/1 Uzlual |yo|y1 y2|y3| V1 Vz
&
| X0Y0 X1y1 | X2Y2 | X3Y3 | uo Vo | upvy | [CY2) u3v3 |

Figure: 7-128, the public function of Multimixer-128

10/12

Universality of Multimixer-128

® We prove for Z # 0, IP]:_128(Z) < IP]-‘_128(0) = 2122295E1 < 2120 — MIP £.15g

11/12

Universality of Multimixer-128

® We prove for Z # 0, IP]:_128(Z) < IP]-‘_128(0) = 2122295g1 < 2120 — MIP £.15g

® MDP £.1»g is determined by the number of minimum active multiplications

11/12

Universality of Multimixer-128

® We prove for Z # 0, IP]:_128(Z) < IP]-‘_128(0) = 2122295g1 < 2120 — MIP £.15g

® MDP £.1»g is determined by the number of minimum active multiplications

® The minimum number of active multiplications is determined by N, and Ng

11/12

Universality of Multimixer-128

1201

® We prove for Z # 0, IP]:_128(Z) < IP]-‘_128(0) = 22256 < 2120 — MIP £.15g

® MDP £.1»g is determined by the number of minimum active multiplications

® The minimum number of active multiplications is determined by N, and Ng

® Branch number of an n x n matrix N over Z /2" Z: m?ig(w(x) + w(N - x))
X

11/12

Universality of Multimixer-128

1201

® We prove for Z # 0, IP]:_128(Z) < IP]-‘_128(0) = 22256 < 2120 — MIP £.15g

® MDP £.1»g is determined by the number of minimum active multiplications
® The minimum number of active multiplications is determined by N, and Ng

® Branch number of an n x n matrix N over Z /2" Z: m?ig(w(x) + w(N - x))
X

N, and Ng both have branch number 4

11/12

Universality of Multimixer-128

1201

® We prove for Z # 0, IP]:_128(Z) < IP]-‘_123(0) = 22256 < 2120 — MIP £.15g

® MDP £.1»g is determined by the number of minimum active multiplications
® The minimum number of active multiplications is determined by N, and Ng

® Branch number of an n x n matrix N over Z /2" Z: m?ig(w(x) + w(N - x))
X

N, and Ng both have branch number 4

When (a, b) is such that 4 multiplications are active, DPr.105((a, b), A) < 27128

11/12

Universality of Multimixer-128

1201

® We prove for Z # 0, IP]:_128(Z) < IP]-‘_123(0) = 22256 < 2120 — MIP £.15g

® MDP £.1»g is determined by the number of minimum active multiplications
® The minimum number of active multiplications is determined by N, and Ng

® Branch number of an n x n matrix N over Z /2" Z: m?ig(w(x) + w(N - x))
X

N, and Ng both have branch number 4

When (a, b) is such that 4 multiplications are active, DPr.105((a, b), A) < 27128
In particular for all a # 0, DP£.18((a,0),0) = DPx.125((0,a),0) = 2128

11/12

Universality of Multimixer-128

1201

® We prove for Z # 0, IP]:_128(Z) < IP]-‘_123(0) = 22256 < 2120 — MIP £.15g

® MDP £.1»g is determined by the number of minimum active multiplications

® The minimum number of active multiplications is determined by N, and Ng

® Branch number of an n x n matrix N over Z /2" Z.: rxr;ig(w(x) + w(N - x))

® N, and Ng both have branch number 4

® When (a,b) is such that 4 multiplications are active, DPr.10g((a, b), A) < 27128
® In particular for all a # 0, DP£.12((a,0),0) = DPr.155((0,a),0) = 27128

® For all other differences, DPr.12g((a, b), A) < 27160

11/12

Universality of Multimixer-128

1201

® We prove for Z # 0, IP]:_128(Z) < IP]-‘_123(0) = 22256 < 2120 — MIP £.15g

® MDP £.1»g is determined by the number of minimum active multiplications
® The minimum number of active multiplications is determined by N, and Ng

® Branch number of an n x n matrix N over Z /2" Z: m?ig(w(x) + w(N - x))
X

® N, and Ng both have branch number 4

® When (a,b) is such that 4 multiplications are active, DPr.10g((a, b), A) < 27128
® In particular for all a # 0, DP£.12((a,0),0) = DPr.155((0,a),0) = 27128

® For all other differences, DPr.12g((a, b), A) < 27160

® Thus, Multimixer-128 is e-A universal with
£ = mZ:IX{1\/IDP]:_1287 I\/IIP]:_]_QS} =217

11/12

Implementation and Benchmarking Results

ops.\ per 256-bit input
Algorithm
X | + mod 232 | + mod 264
NHJ[~,32,4] | 16 32 16
Multimixer-128 | 8 20 8

Table: Comparison of # arithmetic operations

12/12

Implementation and Benchmarking Results

] # ops.\ per 256-bit input
Algorithm
X | + mod 232 | + mod 264
NHJ[~,32,4] | 16 32 16
Multimixer-128 | 8 20 8

Table: Comparison of # arithmetic operations

X # Instructions\ per | Input length in bytes
Algorithm .

256-bit input 512 | 4096 | 32768

NHI[H, 32,4] 16 2.033 | 1.500 | 1.558

Multimixer-128 11 1.830 | 1.233 | 1.396

Table: Performance on 32-bit ARMv7 Cortex-A processor in cycles per byte

12/12

Implementation and Benchmarking Results

ops.\ per 256-bit input

Algorithm
X | + mod 232 | 4+ mod 264
NHJ[~,32,4] | 16 32 16
Multimixer-128 | 8 20 8

Table: Comparison of # arithmetic operations

Instructions\ per

Input

length in bytes

Algorith
(S 256-bit input 512 | 4096 | 32768
NHJ[+, 32, 4] 16 2.033 | 1.500 | 1.558

Multimixer-128 11 1.830 | 1.233 | 1.396

Table: Performance on 32-bit ARMv7 Cortex-A processor in cycles per byte

Thank you for your attention!

12/12

References

[WCB81] Mark N. Wegman and Larry Carter. “New Hash Functions and Their
Use in Authentication and Set Equality”. In: J. Comput. Syst. Sci. 22.3
(1981), pp. 265-279.

[Sti95] Douglas R. Stinson. “On the Connections Between Universal Hashing,
Combinatorial Designs and Error-Correcting Codes”. In: Electron.
Colloquium Comput. Complex. TR95-052 (1995). ECCC: TR95-052.

[Bla+99] John Black et al. “UMAC: Fast and Secure Message Authentication”.
In: Advances in Cryptology - CRYPTO '99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings.
Ed. by Michael J. Wiener. Vol. 1666. LNCS. Springer, 1999, pp. 216-233.

[Dae+18] Joan Daemen et al. “The design of Xoodoo and Xoofff”. In: JACR
Trans. Symmetric Cryptol. 2018.4 (2018), pp. 1-38.

[FRD23] Jonathan Fuchs, Yann Rotella, and Joan Daemen. “On the Security of
Keyed Hashing Based on Public Permutations”. In: Advances in

12/12

TR95-052

Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part
I1l. Vol. 14083. Lecture Notes in Computer Science. Springer, 2023, pp. 607-627.

[Gho+23] Koustabh Ghosh et al. “Universal Hashing Based on Field
Multiplication and (Near-)MDS Matrices”. In: Progress in Cryptology -
AFRICACRYPT 2023 - 14th International Conference on Cryptology in Africa,
Sousse, Tunisia, July 19-21, 2023, Proceedings. Vol. 14064. Lecture Notes in
Computer Science. Springer, 2023, pp. 129-150.

12/12

	References

