High-Performance FV Somewhat
Homomorphic Encryption on GPUs:
An Implementation using CUDA

Ahmad Al Badawi
ahmad@u.nus.edu
National University of Singapore (NUS)

Sept 10t 2018 — CHES 2018

FHE — The holy grail of Cryptography

 FHE enables computing on encrypted data without decryption
[GB2009]

* Challenge: requires enormous computation

Homomorphic
evaluation of f

Encryption/Decryption

Enc(f(x))
_

v

Client Cloud Server

Ahmad Al Badawi - ahmad@u.nus.edu 2

How the problem is being tackled?

e Algorithmic methods:
— New FHE schemes
— Plaintext packing (1D, 2D, ...)
— Encoding schemes
— Approximated computing
— Squashing the target function
— DAG optimizations for the target circuit

* Acceleration methods:
— Speedup FHE basic primitives (KeyGen, Enc, Dec, Add, Mul)
— Modular Algorithms
— Parallel Implementations
— Hardware implementations: GPUs, FPGAs and probably ASICs

Our Contributions

1. Implementation of FV RNS on GPUs
2. Introducing a set of CUDA optimizations

3. Benchmarking with state-of-the-art implementations

Why GPUs for FHE?

* GPU+ ALU | ALU
Control
— Naturally available ALU | ALU
— many computing cores -
— Developer friendly (FPGA,
ASIC) _
CPU
* FHE+

“If you were plowing a field,
which would you rather use?
Two strong oxen or 1024

- chickens?”

— Huge level of parallelism

Seymour Cray
1925-1996

Ahmad Al Badawi - ahmad@u.nus.edu 5

Textbook FV

Basic mathematical structure is R: Z|x]/(x™ + 1)
— Plaintext space: R;: Z:[x]/(x™ + 1)

— Ciphertext space: R;: Zg[x]/(x™ + 1)
Public key: (pko,pk,) € R,

Secret key: (sk) € R,

¢ = Enc(m): (n%‘ m + pkou + eo]q , [pkiu + eq]g)

m = Dec (¢): nﬂ lco + Clsk]q]t

¢t = Add(cy, c1): ([coo + c10lg [co1 + €11]4)

Textbook FV (cont.)

= Mul(c,, c{, evk):
1. Tensor product:

It
Vo = [la COOC10]] ;U2
q

= [lé C01C11]]

q

v = [l% (CooC11 + C01C10)]]

Base decomposition:

l
_ (D)
-

i=0

vj + 2 evk;; - v2

Rellnearlzatlon

)

,J €10,1}

Implementation Requirements

Polynomial arithmetic in cyclotomic rings

Large polynomial degree (a few thousands)
— Power-of-2 cyclotomic
— Addition/Subtraction: 0 (n)

— Multiplication: O(n logn)

Large coefficients € Z, (a few hundreds of bits)

— Modular algorithms (RNS)
Extra non-trivial operations:
— Scaling-and-round [gx]

— Base decomposition

Polynomial Arithmetic

CRT:
q = é‘z_ol p; , Where p; is a prime

log, p-bit
number RNS / CRT
\: n
oo e o o (. Po
o0
o -, P1
B [1082 q} . .
logzp| | o
(. 0O | Pk-1

Addition/Subtraction: component-wise add/sub modulo p;

Polynomial Arithmetic (cont.)

32-bit
number RNS / CRT NTT > NTT (DGT)
\{: :)
D00 s _____Qilpo (==X AR]
0o 0o
o -, P1 O -, P1
= [logz ql . . . o

logzp| | ¢ .

() O | Pr-1 () O |DPk-1

< NTT 1

Addition/Subtraction/Multiplication: component-wise add/sub/mul modulo p;

DFT, NTT, DWT, DGT...?

Pros Cons
DFT - Well-established - Floating point errors increase as (n & pgs) increase
- Several efficient libraries to use | - Reduce precision (smaller p!s) => longer RNS matrix
=>more DFTs
NTT - Exact - Transform length (2n)
DWT - Exact - Only power-of-2 cyclotomics
- Transform length (n)
DGT - Exact - Only power-of-2 cyclotomics

- Transform length (2)
- 50% Less interaction with

memory

- Gaussian Arithmetic (larger number of
multiplications ~(30% - 40%)

* We use DGT in our implementation

Ahmad Al Badawi - ahmad@u.nus.edu 11

Efficient DGT/NTT/DWT on GPU?

* Better to store w/! in lookup table. [, NTT(a) sit.
— LUT can be stored in GPU texture A = nz_:laiwﬁ mod g
memory (which is limited on GPU) a= NTT_l(AS?ti
— DWT LUT are O(n) a;=n"t Z Ajw™Y mod q
j=0

— DGT LUTare 0(3)

* Computein GF(p) orin GF(p;)?
— We found it is better to do it GF (p;).

— Why? (see next)

Compute in GF(p) orin GF (p;)?

289 -
o
_ [logz CI} o LR .
log, p .
_D
GF(p)

: 64-bit prime (should fit in one word)

(5 T
Zn‘ (one multiplication)
212

n 213 214 215 216

log, p| 26 25 25 24 24

Longer RNS matrix => more NTTs

Size double (32-bit => 64-bit)

Supports limited number of operations
in NTT domain

e TTTTal]Po
P1
= Pk-1

GF(p;)

p: word-size prime (can be 64-bit)
- Shorter RNS matrix => Less NTTs
- No size doubling

- Supports unlimited number of
operations in NTT domain

But, is NTT/DWT/DGT performance-critical?

Breakdown of homomorphic multiplication (AND) in the BFV FHE scheme

Toy Settings Medium Settings
B NTT
B RNS Base Extension B NTT
m RNS Scaling B RNS Base Extension
M others = RNS Scaling
H others

Large Settings

B NTT
M RNS Base Extension
I RNS Scaling

M others

Halevi, Shai, Yuriy Polyakov, and Victor Shoup. "An Improved RNS Variant of the BFV Homomorphic Encryption Scheme." (2018).

Ahmad Al Badawi - ahmad@u.nus.edu 14

Computing CRT on GPU?

At least two methods:

— Classic algorithm

— Garner’s algorithm

- CRT(a, {p;}) :
(ag, ..

- CRT 1(ay, ...

)Ak-1) = amod p;

,Ar—1) = as.t.

q
Z L ((—) a; (mod pa) (mod q)
—i Dj
=0
where q = [1/53 p;
Classic Garners
LUT k? k(k—1)
2
Thread Divergence Non tractable Nil

Is CRT critical to performance?

— No!

RNS tools

e Useful to:

— Remain in RNS representation

— No costly multi-precision arithmetic
* Two basic operations:

— Scale-and-round

— Base decomposition

« Adopted from (BEHZ2016%) scheme

* Are RNS tools critical to performance?
— Extremely critical

* Bajard, Jean-Claude, et al. "A full RNS variant of FV like somewhat homomorphic encryption schemes." International Conference on
Selected Areas in Cryptography. Springer, Cham, 2016.

FV_RNS Homomorphic Multiplication

Ccwl0]_ etol1]_ enf0]__enl1]_
0 Input in RNS

1 Fast Base Extension — L - - dL _
Column-wise

5 DGT B L _ L JL]

3 Tensor product L 1L | L L i | 1L]
point-wise — =S = — = = = = = = =

4 DGT_l — = — = — = = = — = = -
Row-wise

5 Scale and Round L L _ L L _ — = = =
Column-wise - ar] B 1] B B

6 Fast Base Extension L L _ L J I I — = = =
Column-wise ~ ar 7] B ar B [B

~
lw]
(0]
o=

|

|

|

|

|

|

|

|

|

|

|

|

8 Relinearization
Point-wise

Clumat[0] tmu[1]

1600.000
1400.000
1200.000
1000.000

800.000

Time (ms)

600.000
400.000
200.000

0.000

35.000

30.000

25.000

20.000

Time (ms)

15.000

10.000

5.000

0.000

Benchmarking Results

Key Generation

—4=—GPU-FV
——SEAL
NFLIib-FV

) /

(11,62) (12,186) (13,372) (14,744)

Enc

—4=—GPU-FV
—@—SEAL
NFLIib-FV

. ——

(11,62) (12,186) (13,372) (14,744)

18.000
16.000
14.000
12.000
10.000
8.000
6.000
4.000
2.000
0.000

Time (ms)

500.000
450.000
400.000
350.000

Z 300.000

< 250.000

E 200.000
150.000
100.000

50.000

0.000

Dec

= GPU-FV
——SEAL
NFLlib-FV

_> =
(11,62) (12,186) (13,372) (14,744)
HomoMul + Relinearization
—0—GPU-FV
== SEAL
NFLlib-FV
re T 0
(11,62) (12,186) (13,372) (14,744)

Ahmad Al Badawi - ahmad@u.nus.edu 18

Which FV RNS variant to Implement?

e Two RNS variants of FV

— BEHZ

— HPS

e Answer can be found in:

— Al Badawi, Ahmad, et al. "Implementation and Performance Evaluation of RNS
Variants of the BFV Homomorphic Encryption Scheme." IACR Cryptology ePrint
Archive 2018 (2018): 589.

Thank You

Questions?
Ahmad Al Badawi
ahmad@u.nus.edu

