Mixing Additive and Multiplicative Masking for Probing Secure Polynomial Evaluation Methods

Axel Mathieu-Mahias and Michaël Quisquater

University of Versailles (UVSQ)

CHES'18 September

The Concept of Masking

- Side-channel analysis
 - Information leak through physical leakages
 - Data and physical leakages are dependent

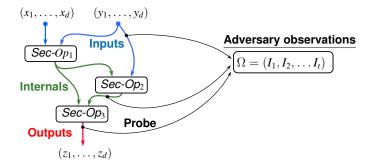
The Concept of Masking

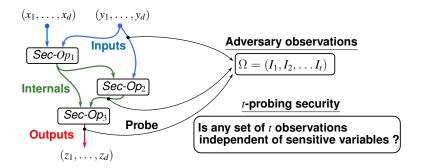
- Side-channel analysis
 - Information leak through physical leakages
 - Data and physical leakages are dependent
- The masking countermeasure
 - Randomly split every variable into several shares
 - Secure the processing through internal operations

The Concept of Masking

- Side-channel analysis
 - Information leak through physical leakages
 - Data and physical leakages are dependent
- The masking countermeasure
 - Randomly split every variable into several shares
 - Secure the processing through internal operations
- Higher-order masking
 - More than 2 shares
 - Sound countermeasure

The Probing Model [ISW03]

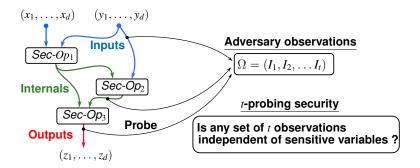




o●ooo About security

Introduction

The Probing Model [ISW03]



Two security notions: t-NI and t-SNI [BBDFG15]

 → t-SNI transformations can be composed safely

State of the Art of Masking S-boxes (Additive Masking)

• Split every variable x into d = t + 1 shares such that

$$x_1 \oplus x_2 \oplus \ldots \oplus x_d = x$$

- Processing of linear transformations: very efficient
- Processing of multiplications : much more expensive

State of the Art of Masking S-boxes (Additive Masking)

• Split every variable x into d = t + 1 shares such that

$$x_1 \oplus x_2 \oplus \ldots \oplus x_d = x$$

- Processing of linear transformations: very efficient
- Processing of multiplications : much more expensive

AES: [RP10]

$$S_{\text{AES}}(x): x \mapsto x^{254} \text{ over } \mathbb{F}_{2^8}$$

Generic case: [CGPQR12]

$$S(x): x \mapsto \sum_{i=0}^{2^n-1} a_i x^i \text{ over } \mathbb{F}_{2^n}$$

State of the Art of Masking S-boxes

Masking schemes in additive encoding

FSE'12 : Carlet et al.

CHES'13: Roy and Vivek

CHES'14: Coron et al.

State of the Art of Masking S-boxes

Masking schemes in additive encoding

FSE'12 : Carlet et al.

CHES'13: Roy and Vivek

CHES'14: Coron et al.

Masking schemes in other encodings

CHES'11: Prouff and Roche

CRYPTO'15: Carlet et al.

EUROCRYPT'14: Coron

EUROCRYPT'15 : Balasch et al.

CHES'16: Goudarzi and Rivain



The use of several encodings simultaneously

GPQ: masking scheme for **power functions** [GPQ11]

Mixes additive and multiplicative masking



The use of several encodings simultaneously

GPQ: masking scheme for **power functions** [GPQ11]

Mixes additive and multiplicative masking

The idea

- Linear transformations : efficient in additive masking
- Multiplications: efficient in multiplicative masking

The use of several encodings simultaneously

GPQ: masking scheme for **power functions** [GPQ11]

• Mixes additive and multiplicative masking

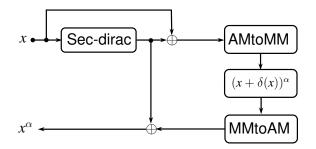
The idea

- Linear transformations : efficient in additive masking
- Multiplications: efficient in multiplicative masking

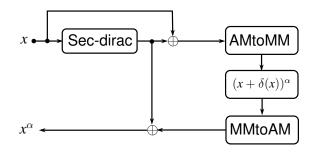
The scheme

- Secure processing of a Dirac function (Secure-dirac)
- Transformations to switch from additive into multiplicative masking (AMtoMM) and conversely (MMtoAM)

GPQ: Masking Scheme for Power Functions



GPQ: Masking Scheme for Power Functions



Our first contribution

GPQ t-NI → GPQ t-SNI

Our Issue and Our Proposals

How to extend GPQ to evaluate polynomials?

Our approach and results

Our Issue and Our Proposals

How to extend **GPQ** to evaluate **polynomials**?

Our issues

- Adding monomials : not efficient in multiplicative masking
- Converting every monomials back in additive masking before adding them: not efficient

Our approach and results

Our Issue and Our Proposals

How to extend **GPQ** to evaluate **polynomials**?

Our issues

- Adding monomials : not efficient in multiplicative masking
- Converting every monomials back in additive masking before adding them: not efficient

Our t-SNI proposals

- One method based on the cyclotomic method [CGPQR12]
- One method based on our first proposal and the CRV method [CRV14]

Reminder of the Cyclotomic Method [CGPQR12]

• The cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^{j} \bmod 2^{n} - 1; j < n\}$

Reminder of the Cyclotomic Method [CGPQR12]

- The cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^{j} \mod 2^{n} 1; j < n\}$
- Any n-bit S-box can be expressed as

$$S(x) = a_0 + \left(\sum_{i=1}^{q} L_i(x^{\alpha_i})\right) + a_{2^n - 1}x^{2^n - 1}$$

where $L_i(x) = \sum_j a_{i,j} x^{2^j}$ and q is the number of distinct cyclotomic classes

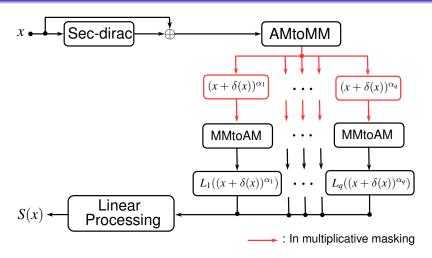
Reminder of the Cyclotomic Method [CGPQR12]

- The cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^{j} \mod 2^{n} 1; j < n\}$
- Any n-bit S-box can be expressed as

$$S(x) = a_0 + \left(\sum_{i=1}^{q} L_i(x^{\alpha_i})\right) + a_{2^n - 1}x^{2^n - 1}$$

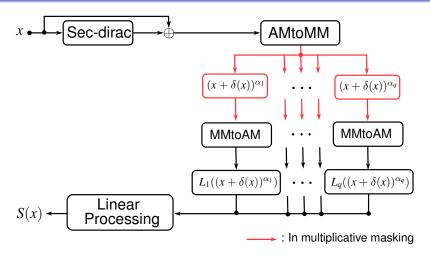
where $L_i(x) = \sum_j a_{i,j} x^{2^j}$ and q is the number of distinct cyclotomic classes

• Deriving the x^{α_i} 's requires multiplications : **expensive in additive masking**.



Introduction

Our First Proposal: The Alternate Cyclotomic Method



The alternate cyclotomic method is **t-SNI**

The cyclotomic method vs The alternate cyclotomic method

Assembly Language Performances: 8-bit Architecture

• Costs (in clock cycles) of evaluating S-boxes of size $4 \le n \le 8$ with the cyclotomic method and our proposal

		n							
Method	Order	4	5	6	7	8			
Our proposal Original	1	83 132	246 780	553 1716	860 2652	1677 5148			
Our proposal Original	2	276 174	585 1770	1362 3894	2138 6018	4205 11682			
Our proposal Original	3	477 293	1036 3160	2445 6952	3854 10744	7603 20856			

The original CRV method

Our Second Proposal: The Alternate CRV Method

Reminder of the original CRV Method [CRV14]

Express any n-bit S-box as

$$S(x) = \sum_{i=1}^{k-1} p_i(x) \cdot q_i(x) + p_k(x)$$

where monomials of $p_i(x)$, $q_i(x)$ belong to x^L with $L \leftarrow \bigcup_{i=1}^l C_{\alpha_i}$

Reminder of the original CRV Method [CRV14]

Express any n-bit S-box as

$$S(x) = \sum_{i=1}^{k-1} p_i(x) \cdot q_i(x) + p_k(x)$$

where monomials of $p_i(x), q_i(x)$ belong to x^L with $L \leftarrow \bigcup_{i=1}^l C_{\alpha_i}$

- Evaluation in two steps
 - Evaluating $q_i(x), p_i(x)$ requires l-2 multiplications
 - 2 Evaluating S(x) requires k-1 multiplications

Introduction

Reminder of the original CRV Method [CRV14]

Express any n-bit S-box as

$$S(x) = \sum_{i=1}^{k-1} p_i(x) \cdot q_i(x) + p_k(x)$$

where monomials of $p_i(x), q_i(x)$ belong to x^L with $L \leftarrow \bigcup_{i=1}^l C_{\alpha_i}$

- Evaluation in two steps
 - Evaluating $q_i(x), p_i(x)$ requires l-2 multiplications
 - **2** Evaluating S(x) requires k-1 multiplications
- Remark: trade-off between l and k

Our alternate approach

Our Second Proposal: The Alternate CRV Method

$$S(x) = \sum_{i=1}^{k-1} p_i(x) \cdot q_i(x) + p_k(x)$$

Our evaluation method

- Evaluating $q_i(x), p_i(x)$ with our t-SNI alternate cyclotomic method
- 2 Evaluating S(x) in additive masking (unchanged)

Our alternate approach

Our Second Proposal: The Alternate CRV Method

$$S(x) = \sum_{i=1}^{k-1} p_i(x) \cdot q_i(x) + p_k(x)$$

Our evaluation method

- Evaluating $q_i(x), p_i(x)$ with our t-SNI alternate cyclotomic method
- 2 Evaluating S(x) in additive masking (unchanged)

Remarks

- More choices of cyclotomic classes to build x^L
- Larger sets $L \leftarrow \bigcup_{i=1}^{l} C_{\alpha_i}$ can be considered
- The alternate CRV method is t-SNI

The CRV method vs The Alternate CRV method

Assembly Language Performances: 8-bit Architecture

• Costs (in clock cycles) of evaluating S-boxes of size $4 \le n \le 8$ with the CRV method and our alternate proposal

				n		
Method	Order	4	5	6	7	8
Our proposal Original CRV	1	127 88	402 624	559 780	713 1092	972 1560
Our proposal Original CRV	2	276 204	939 1416	1296 1770	1685 2478	2300 3540
Our proposal Original CRV	3	477 368	1668 2528	2305 3160	3012 4424	4117 6320

Conclusion

Introduction

lacktriangledown GPQ t-NI ightarrow GPQ t-SNI

Conclusion

- lacktriangledown GPQ t-SNI
- 2 The Alternate cyclotomic method
 - Extends GPQ to polynomial evaluations
 - Three times faster than the original method
 - Satisfies the t-SNI property

Conclusion

- GPQ t-NI → GPQ t-SNI
- The Alternate cyclotomic method
 - Extends GPQ to polynomial evaluations
 - Three times faster than the original method
 - Satisfies the t-SNI property
- The Alternate CRV method
 - Uses Alternate cyclotomic for one evaluation step
 - New sets of parameters can be derived
 - Outperforms the original method in most scenarios
 - Satisfies the t-SNI property

Thanks for your attention!

Introduction