
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 1, pp. 523–551. DOI:10.46586/tches.v2025.i1.523-551

Random Probing Security with Precomputation
Bohan Wang1,2,3, Fanjie Ji1,3, Yiteng Sun1,3 and Weijia Wang2,1,3(B)

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
wjwang@sdu.edu.cn

2 Quan Cheng Laboratory, Jinan, China
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Qingdao, China

Abstract. At Eurocrypt 2014, Duc, Dziembowski and Faust proposed the random
probing model to bridge the gap between the probing model proposed at Crypto 2003
and the noisy model proposed at Eurocrypt 2013. Compared with the probing model
whose noise in the leakages should (linearly) increase with the number of shares, the
random probing model allows each variable leak its value with a probability p, which
reflects the physical reality of side channels much better. In Crypto 2020, Belaïd
et al. proposed the Random Probing Expandability (RPE) security ensuring the
random probing security for arbitrary order masking algorithms with constant leakage
probability. However, the complexity of existing RPE algorithms is much higher
than that of the probing secure algorithms, which is short of practical usage. In this
paper, we investigate the random probing security with precomputation, where a
masked cryptographic implementation can be divided into two phases. The first phase,
called preprocessing, takes random bits and returns a number of precomputed values.
The second phase, called online computation, takes input (e.g., plaintext and shares
of secret) and precomputed values to calculate output (e.g., ciphertext) efficiently.
We describe a random probing secure precomputable scheme, which transforms an
arbitrary circuit compiler with tolerant leakage probability p into a precomputable
one by adding a public (but random) share that is calculated in the online phase
and the tolerant leakage probability of the new compiler is min{p, 2−5.01}. Then, we
apply the new scheme to the bitsliced AES. Notably, the implementation under ARM
Cortex M architecture shows that the performance of the online phase is significantly
improved and even comparable to masking schemes only secure in the probing model.

Keywords: Masking · Random probing model · Precomputation

1 Introduction
Cryptographic algorithms are usually secure against black-box attacks where the adversary
is able to get the knowledge of the inputs and outputs. However, the side-channel at-
tack [Koc96, KJJ99] (SCA) allows the adversary to obtain information about intermediate
variables by exploiting the physical leakage of the underlying devices, such as the execution
time, device temperature, power consumption, etc. Those attacks have posed an important
threat to cryptographic devices. Masking [CJRR99, GP99] is one of the most investigated
countermeasure to counteract side-channel attacks. A masking scheme splits each interme-
diate variable (say, x) into n shares (say, x1, . . . , xn), satisfying x = x1 ∗ · · · ∗ xn where
∗ is some operation. Particularly, the masking is called a Boolean one if operation ∗ is
defined as XOR ⊕, which is probably the most widely used case.

To describe the provable security of masking, Ishai, Sahai and Wagner propose the
probing security model in [ISW03], which assumes the adversary can get t intermediate

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-07-15 Accepted: 2024-09-15 Published: 2024-12-09

https://doi.org/10.46586/tches.v2025.i1.523-551
mailto:wjwang@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/

524 Random Probing Security with Precomputation

variables from an algorithm. Furthermore, the algorithm is t-private secure if the adversary
can not get any information of the secret (unsplit variable) from the t variables. Thanks
to its (relatively) simplicity in proof, the probing security is widely used in numerous
literature (see, e.g., [RP10, CPRR13, Cor14, BBP+16, CGZ20] for an incomplete list).

In [PR13], Prouff and Rivain propose the noisy model, which nicely captures the reality
of the embedded devices by assuming all intermediate variables are leaked with a noise.
However, the security of the noisy model is believed to be hard to be proved. As a result,
Duc et al. proved that the security in the noisy model can be reduced to the security
in the probing model [DDF14]. However, one requirement of the reduction is that the
noise in the leakages should (mostly linearly) increase with the number of shares, largely
restricting the side-channel security in the low-noise scenario. Another security notion for
masking, called the random probing model, is proposed as an intermediate leakage model
in reducing the noisy model to the probing model. It allows each variable leaks its value
with a probability p.

More precisely, it has been proven in [DDF14] that, to maintain the exponential security
against SCA, the tolerant leakage probability of a t-probing secure masking algorithm
(especially for multiplication) decreases as O(t

|G|), where |G| is the size of the algorithm.
Intuitively, the lower the environmental noise is, the higher the leakage probability is. As
a result, practically, high-order masking implementations are more likely to be insecure in
low-noise cases, even if they are provable security, especially in software implementations.
In contrast, schemes in the random probing model with a constant leakage probability
maintain security regardless of the number of shares.

In [AIS18], Ananth, Ishai and Sahai provide an expansion strategy on top of the
multi-party computation protocol. Their work tolerates a constant leakage probability of
2−26 with complexity O(κ8.2) where κ is the security parameter of the failure probability
2−κ of the global circuit [BCP+20]. Then Belaïd et al. extend this expansion strategy to
any circuits at [BCP+20], and the improved gadgets achieve the constant tolerant leakage
probability of 2−8 with the complexity O(κ7.5).

Considering the costly complexity of masking algorithms, the precomputation paradigm
was proposed to improve the performance of masked implementation/protocol in practice.
The first precomputable masking scheme can be traced back to Chari et al. [CJRR99],
known as the table-based masking. The other precompution paradigm, which has been
widely used for secure multi-party computation [BDOZ11, DPSZ12], has recently emerged
in the field of masking [VV21, WGY+22]. It considers a paradigm where the computation
can be divided into two phases: precomputation and online phase. The precomputation
is independent of the input variables, and it produces some precomputed variables to be
temporarily stored in the RAM, which can be performed in the devices’ idle time. Then the
online phase takes all the input and precomputed variables to calculate the outputs more
efficiently. The merit of the above precomputation paradigm is that the precomputation
can be done in the idle time of the cryptographic device, significantly accelerating some
cryptographic protocols implemented with masking, see the challenge-response protocols
described in [WGY+22] for a typical example. More precisely, in these protocols, where
one user (Alice) presents a challenge and waits for the other user (Bob) to provide a valid
response for authentication, both Alice and Bob can precompute most of the intermediate
values and output shares in advance. They only need to compute the final share once the
complete challenge or response has been received.

1.1 Our Contribution

To the best of our knowledge, we propose the first precomputable addition, copy and
multiplication gadgets with random probing security in this paper, which reduces the online

Bohan WangFanjie JiYiteng SunWeijia Wang 525

complexity from O(n2.77) [BCP+20] to O(n). 1 More precisely, there are two contributions.
First, we propose a scheme that transforms an arbitrary circuit compiler into a pre-

computable one by adding a public (but random) share that is calculated in the online
phase. We show that the gadgets in the scheme satisfy the random probing composabil-
ity (RPC) [BCP+20] with tolerant leakage probability min{p, 2−5.01} and linear memory
usage in the execution, where p is the tolerant leakage probability of the initial circuit
compiler. We illustrate the concept in Figure 1 and compare it with the state-of-the-art
works in Table 1.

Table 1: Comparison in leakage probability and online complexity between the state-of-
the-art works and ours.

Works [BCP+20] [BRT21] [BRTV21] [CFOS21] Ours
Leakage probability Constant Constant Constant Not constant Constant3

Online complexity O(n2.77) O(n2.47)1 O(n2.55)2 O(n2) O(n)
Code size (pre/online) − − − − 22.7/79.9 KB
1 Similar to [BCP+20], the complexity is O(15k) for 3k-share gadgets, i.e. O(15k) = O

(
(3k)2.47

)
=

O(n2.47) for n-share gadgets.
2 Similar to [BCP+20], the complexity is O

(
(18 log 3− 12)k

)
for 3k-share gadgets, i.e. O

(
(18 log 3

− 12)k
)

= O
(

(3k)2.55
)

= O(n2.55) for n-share gadgets.
3 The failure probability remains constant if the leakage probability of the initial circuit compiler is
constant, and vice versa.

Then, we apply the above gadgets in bitsliced AES, and compare the result of cycle
counts, random cost and memory usage between the state-of-the-art works of precomputa-
tion and random probing security and our work. Our work makes the random probing
security more practical. The implementation under ARM Cortex M architecture shows
that the performance of the online phase is significantly improved and even comparable
to masking schemes only secure in the probing model. For example, when n = 9, the
online computation of our random probing secure scheme runs in 578 000 cycles, while the
well-known result of the scheme in the probing model is 404 500 cycles.

Arbitrary
gadget

a1
a2
a3
b1
b2
b3

c1

c2

c3

=⇒ Precomp.
phase

Online
phase

a1
a2
a3
b1
b2
b3

a4, b4
(public)

c1

c2

c3

c4
(public)

Figure 1: Illustration of the precomputable scheme secure in the random probing model
with n = 3, which transforms an arbitrary gadget into a precomputable one by adding a
public (but random) share.

1.2 Roadmap
We recall the definitions of the random probing model and propose a quantitative criterion
of precomputation in Section 2. Section 3 introduces the precomputable gadgets with
public share and shows their low memory usage and Section 4 shows their security. Then,

1To be exact, the complexity of works in [BCP+20] is O(21k) for 3k-share gadgets, namely O(21k) =
O
(

(3k)2.77
)

= O(n2.77) for n-share gadgets.

526 Random Probing Security with Precomputation

we implement the bitsliced AES with our new gadgets and compare them with other works
in Section 5.1. Finally, we summarize our works in Section 6.

2 Preliminaries
2.1 Notations
Along the paper, K shall denote a finite field, and we define + as the field addition and
· as the field multiplication over K. For any n ∈ N, we shall denote [n] = [1, n] ∩ Z. For
any tuple x̂ = (x1, . . . , xn) ∈ Kn and any set I ⊆ [n], we shall denote x|I = (xi)i∈I . For
simplicity, we define a[n] = a|[n], and a[n] + b[n] = {ai + bi|i ∈ [n]}. For any variable r,
r← $ means that r is a uniformly random variable. Any two probability distributions
D1 and D2 are said ε-close, denoted as D1 ≈ε D2, if their statistical distance is upper
bounded by ε, that is

1
2
∑
x

|pD1(x)− pD2(x)| 6 ε ,

where pD1(·) and pD2(·) denote the probability mass functions of D1 and D2.

2.2 Circuit and Circuit Compiler
An arithmetic circuit on a field K is a labeled directed acyclic graph whose edges are wires
and vertices are arithmetic gates processing operations on K [BRT21]. In this paper, we
consider circuits composed of addition gates

Gadd : K2 → K and Gadd(x1, x2) = x1 + x2 ,

multiplication gates

Gmult : K2 → K and Gmult(x1, x2) = x1 · x2 ,

and copy gates
Gcopy : K→ K2 and Gcopy(x) = (x, x) .

A randomized arithmetic circuit is equipped with an additional random gate that outputs
a fresh uniform random value of K [BRT21].

Definition 1 (Circuit Compiler [BCP+20]). A circuit compiler is a triplet of algorithms
(CC,Enc,Dec) defined as follows:

• CC (circuit compilation) is a deterministic algorithm that takes as input an arithmetic
circuit C and outputs a randomized arithmetic circuit Ĉ.

• Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ Kα to an
encoded input x̂ ∈ Kα′ called sharing.

• Dec (output decoding) is a deterministic algorithm that maps an encoded output
ŷ ∈ Km′ to a plain output y ∈ Km.

These three algorithms satisfy the following properties:

• Correctness : For every arithmetic circuit C of input length α, and for every x ∈ Kα,
we have

Pr
(

Dec
(
Ĉ(x̂)

)
= C(x)|x̂← Enc(x)

)
= 1, where Ĉ = CC(C) .

Bohan WangFanjie JiYiteng SunWeijia Wang 527

• Efficiency : For some security parameter λ ∈ N, the running time of CC(C) is
poly(λ, |C|), the running time of Enc(x) is poly(λ, |x|) and the running time of Dec(ŷ)
is poly(λ, |ŷ|), where poly(λ, q)=O(λk1qk2) for some constants k1, k2.

Note that the circuit compiler was first introduced in [ISW03], and we use a clearer
expression proposed in [BCP+20]. In the following, the n-linear decoding mapping, denoted
as Dec : Kn → K, is defined as

Dec(x1, . . . , xn) = x1 + · · ·+ xn

for every n ∈ N and (x1, . . . , xn) ∈ Kn. We shall further consider that, for every n, α ∈ N,
on input (x̂1, . . . , x̂α) ∈ (Kn)α the n-linear decoding mapping acts as

Dec(x̂1, . . . , x̂α) =
(
Dec(x̂1), . . . ,Dec(x̂α)

)
.

Thanks to these mappings, we shall define gadgets in the following, which was proposed
in [BCP+20].

Definition 2 (Gadget [BCP+20]). An n-share, α-to-m gadget is denoted by a randomized
arithmetic circuit that maps an input x̂ ∈ (Kn)α to an output ŷ ∈ (Kn)m such that
x = Dec(x̂) ∈ Kα and y = Dec(ŷ) ∈ Km satisfy y = g(x) for some function g.

Generally, CC works by replacing each gate of the input circuit with a corresponding
gadget, and in the rest of the paper these gadgets are called base gadgets. In addition, we
define the linear transformation gadget in Definition 3, in which linear operations such as
multiplication with constants and bitshift are contained.

Definition 3 (Linear Transformation Gadget). Let L : Kn → Kn be an n-share gadget
with input a[n]. Then L is a linear transformation gadget if for any L(a[n]) = b[n], there is
L(ai) = bi for i ∈ [n].

2.3 Random Probing Security
In [BCP+20], Belaïd et al. proposed the formal random probing security, which assumes
every wire in the circuit leaks with a probability p. Compared with the probing model
proposed in [ISW03], the random probing model is closer to the SCA in the real world.
Moreover, we will introduce it in this section. Figure 2 shows the security proof flow of
the paper.

(p, ε)-RPS
(Definition 5)

(t, p, f)-RPC
(Definition 6)

(t, f)-RPE
(Definition 7)

(Sk, f)-RPE
(Definition 8)

(Sk, f)-RPC
(Definition 9)

Theorem 1 Proposition 1

Expanded

Proposition 1Algorithms
3, 4, 8

Algorithms
5, 6, 9

: the security goal : the intermediate security : algorithms of our work

Figure 2: Overview of the security proof flow.

We start with the random probing leakage proposed in [BCP+20], which describes the
leakage formally.

528 Random Probing Security with Precomputation

Definition 4 (Random Probing Leakage [BCP+20]). The p-random probing leakage of a
randomized arithmetic circuit C on input x ∈ K is the distribution Lp(C,x) obtained by
composing the leaking-wires and assign-wires samplers as

Lp(C,x) id= AssignWires
(
C, LeakingWires(C, p),x

)
with

• the leaking-wires sampler

W ← LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C with proba-
bility p to W (where all the probabilities are mutually independent).

• the assign-wires sampler takes as input a randomized arithmetic circuit C, a set of
wire labels W (subset of the wire labels of C), and an input x, and it outputs a
|W|-tuple w ∈ (K ∪ {⊥})|W|, denoted as

w← AssignWires(C,W,x) ,

where w corresponds to the assignments of the wires of C with label in W for an
evaluation on input x.

Definition 5 ((p, ε)-RPS (Random Probing Secure) [BCP+20]). A randomized arithmetic
circuit C with α ·n ∈ N input gates is (p, ε)-random probing secure with respect to encoding
Enc if there exists a simulator Sim such that for every x ∈ Kα:

Sim(C) ≈ε Lp(C,Enc(x)) .

Although Random Probing Security (RPS) is a quantifiable security notion for random
probing security, it is rarely used directly in security proofs for masking implementations
against random probing adversaries. This is because the number of verified sets in the
proof increases exponentially with the circuit size. Belaïd et al. introduced Random
Probing Composability (RPC) security to address this issue. Thanks to the composability
of RPC, we can claim the RPS security of a circuit by dividing the circuit into several
gadgets and proving the RPC security of each gadget. This approach significantly reduces
the verification workload.

Definition 6 (Random Probing Composability [BCP+20]). Let n, α,m ∈ N. An n-share
gadget G : (Kn)α → (Kn)m is (t, p, ε)-random probing composable (RPC) for some t ∈ N
and p, ε ∈ [0, 1] if there exists a deterministic algorithm SimG

1 and a probabilistic algorithm
SimG

2 such that for every input x̂ ∈ (Kn)α and for every set collection J1 ⊆ [n], . . . , Jm ⊆ [n]
of cardinals |J1| 6 t, . . . , |Jm| 6 t, the random experiment

W ← LeakingWires(G, p) ,

I← SimG
1 (W,J) ,

out← SimG
2 (x̂|I)

yields
Pr
(
(|I1| > t) ∨ · · · ∨ (|Iα| > t)

)
6 ε

and
out

id=
(
AssignWires(G,W, x̂), ŷ|J

)
,

where I = (I1, . . . , Iα),J = (J1, . . . , Jm) and ŷ = G(x̂). Let f : R→ R. The gadget G is
(t, f)-RPC if it is (t, p, f(p))-RPC for every p ∈ [0, 1].

Bohan WangFanjie JiYiteng SunWeijia Wang 529

Theorem 1 introduces the compositional security of RPC gadgets. Compared to the
original theorem in [BCP+20], we add the conclusion that the composition of RPC gadgets
is also an RPC gadget. This conclusion can be directly proven from the proof of Theorem
1 in [BCP+20].

Theorem 1 ([BCP+20], adapted). Let t ∈ N, p, ε ∈ [0, 1] and CC be a standard circuit
compiler with (t, p, ε)-RPC base gadgets. For every (randomized) arithmetic circuit C
composed of |C| gadgets, the compiled circuit CC(C) is (t, p, |C|·ε)-RPC and (p, |C|·ε)-RPS.
Equivalently, the standard circuit compiler CC is (p, ε)-RPS.

Although RPC gadgets are composable, the calculation of ε is quite complicated
(intuitively, it is more challenging than the verification proof of probing security). In [AIS18],
Ananth, Ishai and Sahai propose a modular approach to build an RPS circuit compiler
from a secure multiparty protocol. This approach was later formalized as the notion of
the expanding compiler [BCP+20], and it is proven to achieve RPC if the base gadgets
verify a property called random probing expandability (RPE) [BCP+20]. Intuitively, for a
(t, f)-RPE gadget, there are two requirements for its leakage simulation:

• If there are no more than t output leaking, the failure (i.e., the size of either input
indices set for simulation is bigger than t) probability of the simulation for any
leakage is f(p);

• If there are more than t output leaking, the failure probability of the simulation for
any internal leakage and n− 1 output wires selected on the internal leakage is f(p).

The first requirement ensures the composability of gadgets, while the second ensures
expandability (as reflected in the proof of Proposition 1, seen in Appendix C of [BCP+20]).

Definition 7 ((t, f)-RPE [BCP+20]). Let f : R→ R. An n-share gadget G : (Kn)2 → Kn
is (t, f)-RPE for some p ∈ [0, 1], if there exists a deterministic algorithm SimG

1 and a
probabilistic algorithm SimG

2 such that for every input (x̂, ŷ) ∈ (Kn)2 and for every set
J ⊆ [n], the random experiment

W ← LeakingWires(G, p) ,

(I1, I2, J
′)← SimG

1 (W, J) ,

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡ (|I1| > t) and F2 ≡ (|I2| > t) verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J ′ is such that J ′ = J if |J | 6 t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,

3. the output distribution satisfies

out
id=
(

AssignWires
(
G,W, (x̂, ŷ)

)
, ẑ|J′

)
,

where ẑ = G(x̂, ŷ).

Moreover, the failure probability of RPE gadgets can be estimated by the expansion
times k. Generally, unmasked circuits are compiled once in the probing model. However,
according to the modular approach [AIS18], they would be compiled several times, meaning

530 Random Probing Security with Precomputation

the operations where the masking gadgets replace gates in the compiled circuits would
repeat multiple times. We refer to the number of compilations as the expansion times
of gadgets. Intuitively, a gadget is RPC and expandable if it is RPE, and its security
level (described by the failure probability against the random probing adversary) increases
exponentially with the expansion times while maintaining a constant leakage probability.

For simplicity, let G̃(a[nk], b[nk], k) be the k-time expansion of the n-share gadget G
with input sharings a[n], b[n] and G̃(k) for short. The gadgets with upper tilde also occur
in Section 3.2 and they are the same format as G̃(a[nk], b[nk], k). For a (t, f)-RPE gadget
G, the security of G̃(k) is also introduced in [BCP+20], called (Sk, f (k))-RPE, where

f (k)(p) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

(p) .

Definition 8 ((Sk, f)-RPE [BCP+20]). Let f : R → R and k ∈ N. An nk-share gadget
G : Knk → Knk is (Sk, f)-RPE if there exists a deterministic algorithm SimG

1 and a
probabilistic algorithm SimG

2 such that for every input (x̂, ŷ) ∈ Knk ×Knk , for every set
J ∈ Sk ∪ [nk] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p) ,

(I1, I2, J
′)← SimG

1 (W, J) ,

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡ (I1 6∈ Sk) and F2 ≡ (I1 6∈ Sk) verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J ′ is such that J ′ = J if J ∈ Sk and J ′ = [nk]/{j?} for some j? ∈ [nk] otherwise,

3. the output distribution satisfies

out
id=
(

AssignWires
(
G,W, (x̂, ŷ)

)
, ẑ|J′

)
,

where ẑ = G(x̂, ŷ),

where

S1 = {I ∈ [n], |I| 6 t} ,
Sk = {(I1, . . . , In) ∈ (Sk−1 ∪ [nk−1])n, Ij ∈ Sk−1 ∀j ∈ [n] except at most t} .

Next, we introduce the formal expression of the relationship between RPE and RPC,
as well as the relationship between normal RPE gadgets and expanded RPE gadgets, in
Proposition 1.

Proposition 1 ([BCP+20]). Let f : R→ R and n ∈ N. Let G be an n-share gadget. If G
is (t, f)-RPE, then

• G is (t, 2 · f)-RPC.

• G̃(k) is (Sk, f (k))-RPE.

Correspondingly we have the definition of (Sk, f)-RPC to describe the composable
security of G̃(k) with the (t, f)-RPE G.

Bohan WangFanjie JiYiteng SunWeijia Wang 531

Definition 9 ((Sk, f)-RPC). Let n, α,m, k ∈ N. An nk-share gadget G : (Knk)α →
(Knk)m is (Sk, f)-RPC for some p, f(p) ∈ [0, 1] if there exists a deterministic algorithm
SimG

1 and a probabilistic algorithm SimG
2 such that for every input x̂ ∈ (Knk)α and for

every set collection J1 ∈ Sk, . . . , Jm ∈ Sk, the random experiment

W ← LeakingWires(G, p) ,

I← SimG
1 (W,J) ,

out← SimG
2 (x̂|I)

yields
Pr
(
(I1 /∈ Sk) ∨ · · · ∨ (Iα /∈ Sk)

)
6 f(p)

and
out

id=
(
AssignWires(g,W, x̂), ŷ|J

)
,

where J = (J1, . . . , Jm) and ŷ = G(x̂).

Then according to Proposition 1, G̃(k) is (Sk, 2 · f (k))-RPC. Nevertheless, Theorem 1
also works with (Sk, f)-RPC gadgets. By the definition of RPE, [BCP+20] provides the
method to get a compiled circuit with any failure probability 2−κ:

1. Construct (t, f)-RPE addition gadget Add, copy gadget Copy and multiplication
gadget Mul.

2. Generate Ãdd(k), C̃opy(k) and M̃ul(k) with failure probability f (k).

3. Replace the gates of the original circuit G with Ãdd(k), C̃opy(k) and M̃ul(k) such
that

|G| · 2 · f (k) 6 2−κ .

To quantitate the efficiency of RPE gadgets, [BCP+20] defines the amplification order d
of the failure probability ε = f(p) of these gadgets. As an intuition, higher amplification
order refers to better security.

Definition 10 (Amplification order [BCP+20]).

• Let f : R→ R which satisfies

f(p) = cdp
d +O(pd+ε)

as p tends to 0, for some cd > 0 and ε > 0. Then d is called the amplification order
of f .

• Let t > 0 and G a gadget. Let d be the maximal integer such that G achieves
(t, f)-RPE or (t, f)-RPC for f : R→ R of amplification order d. Then d is called the
amplification order of G (with respect to t).

As shown in [BCP+20], the complexity of the expanded gadgets relates to the (minimum)
amplification order of the three gadgets used in the base compiler CC. Suppose it achieves
(t, f)-RPE with an amplification order d. In that case, the expanding compiler achieves
(p, 2−κ)-RPS with a complexity blowup of O(κe) for an exponent e satisfying

e = logNmax

log d

with
Nmax = max

(
Nm,m, eigenvalues

((
Na,a Nc,a
Na,c Nc,c

)))
,

532 Random Probing Security with Precomputation

where Nx,y denotes the number of gates “x” in a gadget “y”, with “m” meaning multipli-
cation, “a” meaning addition, and “c” meaning copy. They are used in Section 3.5.

Naturally, achieving the upper bound of the amplification order refers to the smallest
complexity. In [BRT21], the generic upper bound on the amplification order is given.

Lemma 1 (Upper bound of the amplification order for (t, f)-RPE [BRT21]). Let f : R→
R, n ∈ N and α,m ∈ {1, 2}. Let G : (Kn)α → (Kn)m be an α-to-m n-share complete
gadget achieving (t, f)-RPE. Then its amplification order d is upper bounded by

min
(
(t+ 1), (3− α) · (n− t)

)
.

3 Precomputation with Public Shares
In this section, we provide the precomputation method with public shares, in which we can
use any gadgets with n precomputation shares and the additional online share is public
(i.e., treated as constant). Besides, the security of the n-share gadgets and the correctness
of the (n+ 1)-share operation are kept.

3.1 Construction for the RPC Gadgets with Public Shares
We introduce the overview of the method in the following and let ` = 3k in the rest of the
paper.

1. First, we generate the `-share private circuit with the circuit compiler (Add, Copy,Mul),
where Add,Copy,Mul are (Sk, f)-RPC. Besides, Copy satisfies

∑
i∈[`] ai =

∑
i∈[`] bi =∑

i∈[`] ci with input sharing a[`] and output sharings b[`], c[`], Add satisfies
∑
i∈[`] ai +∑

i∈[`] bi =
∑
i∈[`] ci with input sharings a[`], b[`] and output sharing c[`], and Mul sat-

isfies
∑
i∈[`] ai ·

∑
i∈[`] bi =

∑
i∈[`] ci with input sharings a[`], b[`] and output sharing

c[`].

2. Then we bring into the public shares with index `+ 1.

• We calculate output sharing c[`] for Add with precomputation sharings a[`], b[`],
and c`+1 ← a`+1 + b`+1 as the public output directly since the addition of a`+1
and b`+1 need not satisfy any RPE or RPC security. We call the composed
addition gadget Addp.

• Let b`+1, c`+1 ← a`+1 with public outputs b`+1, c`+1 and public input a`+1 for
the precomputable gadget Copyp whose precomputed outputs b[`] and c[`] are
generated by Copy with input a[`].

• As for Mul, we compose it with other gadgets such that the composed gadget
(called Mulp) satisfies

∑
i∈[`+1] ai ·

∑
i∈[`+1] bi =

∑
i∈[`+1] ci.

In Figure 3, we show the general constructions of Addp, Copyp and Mulp. We stress that
the addition of a`+1 and b`+1 in Addp (resp. a`+1 in Copyp) is not an RPE or RPC addition
(resp. copy) but a normal one.

As for Mulp, we note that the gadgets composed with Mul are all linear transformation
gadgets, and the detailed construction is stated in the next section. Considering that Addp
and Mulp are composable, we show their (Sk, f)-RPC security in Section 3.2.

3.2 Circuit Compiler with Public Shares
In this section, we introduce the gadgets described in Section 3.1, i.e., Addp,Copyp and
Mulp. Additionally, we provide Linp to ensure the security of linear transformations in

Bohan WangFanjie JiYiteng SunWeijia Wang 533

Add

+

Addp

a[`]

b[`]

c[`]

a`+1

b`+1

c`+1

Copy
a[`] b[`]

c[`]
a`+1 b`+1

c`+1
Copyp

Mul

Linear transformation

Mulp

a[`]

b[`]
a[`+1]

b[`+1]

c[`+1]

Figure 3: Brief introduction of Addp, Copyp and Mulp mentioned above.

Algorithm 1 Addition Gadget Addp(a[`+1], b[`+1])
Input: input sharings a[`], b[`] and the public inputs a`+1, b`+1
Output: output sharing c[`] and the public output c`+1 where

∑
i∈[`+1](ai + bi) =∑

i∈[`+1] ci

Precomputation Phase
Input: a[`], b[`]
Output: c[`]
1: c[`] ← Add(a[`], b[`])

Precomputed storage: Null

Online Phase
Input: a`+1, b`+1
Output: c`+1
1: c`+1 ← a`+1 + b`+1

Algorithm 2 Copy Gadget Copyp(a[`+1], b[`+1])
Input: input sharing a[`] and the public input a`+1
Output: output sharings b[`], c[`] and the public outputs b`+1, c`+1 where

∑
i∈[`+1] ai =∑

i∈[`+1] bi =
∑
i∈[`+1] ci

Precomputation Phase
Input: a[`]
Output: b[`], c[`]
1: c[`] ← Copy(a[`], b[`])

Precomputed storage: Null

Online Phase
Input: a`+1
Output: b`+1, c`+1
1: b`+1, c`+1 ← a`+1

the masking implementation. First, we present Addp,Copyp in Algorithms 1, 2. Notably,
neither algorithm uses memory, and their online complexity is O(1).

Then, we introduce Mulp at Algorithm 3 illustrated in Figure 4. Figure 3 illustrates

534 Random Probing Security with Precomputation

that Mulp calls an RPC multiplication gadget to generate the first ` output shares through
some precomputable operations. Additionally, the input sharings a[`], b[`], along with some
other precomputed variables, are used to calculate the public output share c`+1 during the
online phase with the public input shares a`+1, b`+1. Moreover, all the online operations
of Mulp are contained in Submult (i.e., Algorithm 4), so we do not explicitly distinguish
the online and precomputation phases in Algorithm 3.

Copy Copy Copy Copy

Mul

L̃inpre
fo

L̃inpre
fo AddÃddpre

fo Ãddpre
fo

a[`] b[`] r1,[`] r2,[`]

a2
[`]

a1
[`]

b1
[`]

b2
[`] r1

1,[`]

r2
1,[`]

r1
2,[`]

r2
2,[`]

L̃inon
fo

L̃inon
foÃddon

fo Ãddon
fo

e′[`]

e[`] g′[`]
g[`]

h′[`]f ′[`]

+ Add

b`+1

a`+1

f[`] h[`] t[`]c′[`]

∑
+

i[`]
c′`+1

a`+1 · b`+1
c[`]

c`+1

: Gadgets not in Submult

: Gadgets in Submult

: Gadgets in the online phase of Submult

Figure 4: Illustration of Mulp. The blue sharings are the inputs and output of Mulp,
including both the secret ones and the public ones.

Besides, we stress that the calculations for i[`] and c`+1 (namely steps 6, 7 and 8 of
the online phase in Submult) are trivially expanded. More precisely, there are directly
ij ← fj +hj for j ∈ [`] and c`+1 ←

∑
j∈[`] ij + a`+1 · b`+1, without any additional randoms

and tricks.

Algorithm 3 Multiplication Gadget Mulp(a[`+1], b[`+1])
Input: the input sharings a[`], b[`] and the public inputs a`+1, b`+1
Output: output sharing c[`] and the public output c`+1 where

∑
i∈[`+1] ai ·

∑
i∈[`+1] bi =∑

i∈[`+1] ci
1: (a1

[`], a
2
[`])← Copy(a[`])

2: (b1
[`], b

2
[`])← Copy(b[`])

3: c′[`] ← Mul(a1
[`], b

1
[`])

4: (t[`], c`+1)← Submult(a2
[`], b

2
[`], a`+1, b`+1)

5: c[`] ← Add(t[`], c′[`])

Considering that the expansion of the invoked gadgets in Submult is different from the
present constructions (because one of their input sharing would be all online shares), we
introduce Addfo and Linfo for the expansion in Submult. Meanwhile, the precomputation
phases of Addfo, Linfo are called Addpre

fo , Linpre
fo respectively, while the online phases are

called Addon
fo , Linon

fo respectively.
Besides, we introduce Linp as the linear transformation gadget in Algorithm 8.

3.3 The Memory Usage for the Gadgets with Public Shares
In this section, we introduce the memory usage and online complexity for the gadgets
in Section 3.1. Considering that there is no memory usage for Addp,Copyp and Linp, we
provide the memory usage of Mulp and its related online gadgets e.g., Addfo and Linfo.

Bohan WangFanjie JiYiteng SunWeijia Wang 535

Algorithm 4 Submult(a[`+1], b[`+1])
Input: input sharings a[`], b[`] and the public inputs a`+1, b`+1
Output: output sharing t[`] and the public output c`+1

Precomputation Phase
Input: a[`], b[`]
Output: e′[`], f ′[`], g′[`], h′[`] and t[`]
1: r[2],[`] ← $
2: (r1

1,[`], r
2
1,[`])← Copy(r1,[`])

3: (r1
2,[`], r

2
2,[`])← Copy(r2,[`])

4: t[`] ← Add(r2
1,[n], r

2
2,[`])

5: e′[`] ← L̃inpre
fo (a[`], k)

6: f ′[`] ← Ãddpre
fo (r1

1,[`], k)

7: g′[`] ← L̃inpre
fo (b[`], k)

8: h′[`] ← Ãddpre
fo (r1

2,[`], k)
Precomputed storage: e′[`], f ′[`], g′[`], h′[`]

Online Phase
Input: e′[`], f ′[`], g′[`], h′[`] and a`+1, b`+1
Output: c`+1
1: c`+1 ← 0
2: e[`] ← L̃inon

fo (b`+1, e
′
[`], k)

3: f[`] ← Ãddon
fo (e[`], f

′
[`], k)

4: g[`] ← L̃inon
fo (a`+1, g

′
[`], k)

5: h[`] ← Ãddon
fo (g[`], h

′
[`], k)

6: i[`] ← f[`] + h[`]
7: c′`+1 ← c′`+1 +

∑
j∈[`] ij

8: c`+1 ← c′`+1 + a`+1 · b`+1

Algorithm 5 Addition Gadget Addfo(a[n], b[n]) for Iteration
Input: input sharings a[n], b[n] where b[n] are unavailable in precomputation phase
Output: output sharing c[n] where

∑
i∈[n](ai + bi) =

∑
i∈[n] ci

Precomputation Phase
Input: a[n]
Output: c′′[n] for the online phase
1: c′[n] ← Refreshfo(a[n])
2: c′′[n] ← Refreshfo(c′[n])

Precomputed storage: c′′[n]

Online Phase
Input: b[n], c

′′
[n]

Output: c[n]
1: c[n] ← b[n] + c′′[n]

536 Random Probing Security with Precomputation

Algorithm 6 Linear Transformation Gadget Linfo(e, a[n]) for Iteration
Input: input sharing a[n] and constant e
Output: output sharing b[n] where

∑
i∈[n] bi = e ·

∑
i∈[n] ai

Precomputation Phase
Input: a[n]
Output: c′[n] for the online phase
1: b′[n] ← Refreshfo(a[n])

Precomputed storage: b′[n]

Online Phase
Input: b′[n], e
Output: c[n]
1: b[n] ← e · b′[n]

Algorithm 7 Refresh Gadget Refreshfo
Input: input sharing a[n]
Output: output sharing b[n] such that

∑
i∈[n] bi =

∑
i∈[n] ai

1: b′[n] ← 0
2: for i← 1 to n do
3: for j ← i+ 1 to n do
4: ri,j ← $
5: b′i ← b′i + ri,j
6: b′j ← b′j + ri,j
7: end for
8: end for
9: b[n] ← a[n] + b′[n]

Algorithm 8 Linear Transformation Gadget Linp
Input: input sharing a[`] and the public input a`+1
Output: output sharing b[`] and the public output b`+1 with

∑
i∈[`+1] bi = L(

∑
i∈[`+1] ai)

where L is the linear transformation operation

Precomputation Phase
Input: a[`]
Output: b[`]
1: b[`] ← Lin(a[`])

Precomputed storage: Null

Online Phase
Input: a`+1
Output: b`+1
1: b`+1 ← L(a`+1)

Corollary 1. The memory usage of Mulp is 4`.

Corollary 1 follows directly for k = 1 where the memory usage is 12 according to
Algorithm 4, namely a[3], b[3] and r[2],[3]. As for the situation of k > 1, the memory usage
of Mulp depends on Addfo and Linfo.

First, we show the memory usage of L̃info(k). Since step 1 of L̃info(k) can be operated

Bohan WangFanjie JiYiteng SunWeijia Wang 537

Algorithm 9 Lin
Input: input sharing a[n], refresh gadget Refresh
Output: output sharing c[n] of L(a[n])
1: b[n] ← L(a[n])
2: c[n] ← Refresh(b[n])

in the precomputation phase, the only memory usage of L̃info(k) is b′[`], which means the
memory usage of L̃info(k) is `.

Then we consider Addfo. We show how the memory is used in Ãddfo(k) with k = 1, 2
in Figure 6. The operations contained by the red dashed rectangles in Figure 6 can be
precomputed because all of the used variables are random, which results in an `-share
sharing. Consequently, the memory usage of an `-share Addfo is 2`.

So for the `-share Mulp, there is total 2` memory usage for the L̃info(k) and 2` memory
usage for the Ãddfo(k). Note that the memory usage of Ãddfo(k) is not 4` because one of
the input sharing of Ãddfo(k) is the output of L̃info(k). We illustrate the online phase of
Mulp in Figure 5. According to the proof of Lemma 5, the additions after the calculations
of e[`] and f[`] can be operated with normal addition gates because it is secure for Mulp
even all intermediate variables at step 4 and 6 in the online phase are public. So the
memory usage of the whole Mulp is 4`.

e′[`] ·

b`+1

+

f ′[`]

g′[`] ·

a`+1

+

h′[`]

+
∑

c`+1
Linfo

Linfo

Addfo

Addfo

Figure 5: The online phase of Mulp. The 4` blue variables are stored. There are totally 6`
operations in the online phase, which means the online complexity of Mulp is O(n) since
Mulp is an (`+ 1)-share gadget.

3.4 Online Complexity of the Circuit Compiler
Next, we discuss the online complexity of the precomputable gadgets. Given that the
online complexity of Addp,Copyp and Linp is O(1), we only provide the online complexity
of Mulp in Corollary 2.

Corollary 2. The online complexity of the (`+ 1)-share Mulp is O(`).

We provide the online complexity matrix of Addfo and Linfo below to prove Corollary 2.
The definition of Nx,y is described in Section 2.3. In addition,

• afo denotes addition gates where one input is provided online and the other is stored.
These gates are replaced by Addfo during the expansion process;

• lfo represents linear transformation gates with one online input and one stored input,
which are substituted by Linfo during the expansion.

538 Random Probing Security with Precomputation

bn+1 · a[n]

r1
1,[n]

r1
[n]

r2
[n]

+

+

+ e[n]

bn2+1 · a[n2]

r1
1,[n2]

r1
[n2]

r1,1
[n2]

r1,2
[n2]

r2
[n2]

r2,1
[n2]

r2,2
[n2]

r0,1
[n2]

r0,2
[n2]

+

+

+

+

+

+

+

+

+ e[n2]

Figure 6: The calculations of Ãddfo(k) with k = 1, 2 and n = 3 to get e[n] (or e[n2]) in Submult. Randoms
r

[2]
[n], r

[2]
[n2] and {r

i,[2]
[n2]}i∈[0,2] are generated in Refreshfo, namely b′[n] or b′[n2].

M =
(
NAddfo,afo NLinfo,afo

NAddfo,lfo NLinfo,lfo

)
=
(

3 0
0 3

)
.

Therefore, the online complexity of both Ãddfo(k) and L̃info(k) is O(3k) = O(`).
Moreover, the complexity of calculations from step 6 to step 8 of the online phase of Submult
is also O(`), as there are a total of 2` additions and one multiplication. Consequently, the
overall online complexity of Submult is O(`).

3.5 Randomness Cost of the Circuit Compiler
First we calculate the randomness cost of Add1,Copy1 and Mul1. The definition of Nx,y
are described in Section 2.3.

N =


Na,a Nc,a Nm,a Nr,a
Na,c Nc,c Nm,c Nr,c
Na,m Nc,m Nm,m Nr,m
Na,r Nc,r Nm,r Nr,r

 =


15 12 42 0
6 9 30 0
0 0 9 0
6 6 18 3

 .

Therefore, the randomness cost for k = 1 is N (1)
a,r = N

(1)
c,r = 6, N (1)

m,r = 18. And for k = 2,
there is 

N
(2)
a = N · (N (1)

a)T = N · (15, 6, 0, 6)T = (297, 144, 0, 144)T

N
(2)
c = N · (N (1)

c)T = N · (12, 9, 0, 6)T = (288, 153, 0, 144)T

N
(2)
m = N · (N (1)

m)T = N · (42, 30, 9, 18)T = (1 368, 792, 81, 648)T
,

i.e., N (2)
a,r = N

(2)
c,r = 144, N (2)

m,r = 648. For k = 3,
N

(3)
a = N · (N (2)

a)T = N · (297, 144, 0, 144)T = (6 183, 3 078, 0, 3 078)T

N
(3)
c = N · (N (2)

c)T = N · (288, 153, 0, 144)T = (6 156, 3 105, 0, 3 078)T

N
(3)
m = N · (N (2)

m)T = N · (1 368, 792, 81, 648)T = (33 426, 17 766, 243, 16 362)T
,

i.e., N (3)
a,r = N

(3)
c,r = 3 078, N (3)

m,r = 16 362.

Bohan WangFanjie JiYiteng SunWeijia Wang 539

Addition. Now we cope with Addp, the randomness cost of Addp is the same as Add1
since we use Add1 as the RPC gadget in Addp, i.e., 6× 2 = 12 Bytes randoms for k = 1,
144× 2 = 288 Bytes randoms for k = 2 and 3 078× 2 = 6 156 Bytes randoms for k = 3.

Copy. Copyp needs 6× 2 = 12 Bytes randoms for k = 1, 144× 2 = 288 Bytes randoms
for k = 2 and 3 078× 2 = 6 156 Bytes randoms for k = 3.

Multiplication. As for the randomness cost of Mulp, we have

Nmultp
= Nmult1 + 2Nadd1 + 4Ncopy1 + 2NLinfo + 2Naddfo ,

where N∗ means the randomness cost of the corresponding gadget. We also have

R =


N fo
a,a N fo

a,c N fo
a,l N fo

a,r

N1
c,a N1

c,c N1
c,l N1

c,r

N fo
l,a N fo

l,c N fo
l,l N fo

l,r

Nr,a Nr,c Nr,l Nr,r

 =


15 6 0 6
12 9 0 6
6 3 3 3
0 0 0 3

 ,

where the first and third line of R are the number of addition, copy, linear operations
and randomness cost of Addp and Linp respectively, the second line is that of Copy and
the last line is that of the random gate. Let N fo

∗ = (N fo
∗,a, N

fo
∗,c, N

fo
∗,l, N

fo
∗,r), and let

N1
∗ = (N1

∗,a, N
1
∗,c, N

1
∗,l, N

1
∗,r). There is{

N ′addfo
= N fo

a ·Nfo = (297, 144, 0, 144)
N ′′addfo

= N fo
a ·N2

fo = (6 183, 3 078, 0, 3 078)

and {
N ′linfo

= N fo
l ·Nfo = (144, 72, 9, 72)

N ′′linfo
= N fo

l ·N2
fo = (3 078, 1 539, 27, 1 539)

.

Hence there are (18 + 2× 6 + 4× 6 + 2× 6 + 2× 3)× 2 = 144 Bytes randomness cost for
k = 1, (648 + 2× 144 + 4× 144 + 2× 144 + 2× 72)× 2 = 3 888 Bytes randomness cost
for k = 2 and (16 362 + 2× 3 078 + 4× 3 078 + 2× 3 078 + 2× 1 539)× 2 = 88 128 Bytes
randomness cost for k = 3.

Linear transformation. There are 6 Bytes random for k = 1, 144 Bytes random for
k = 2 and 3 078 Bytes random for k = 3 since Linp uses one Refresh and Addp uses two
and all of their randoms are used by Refresh.

4 Security of the New Compiler
In this section, we establish the security of the gadgets discussed in Section 3. We
demonstrate the security of Addp and Copyp through the following lemmas. The proofs of
these lemmas are straightforward since all additional wires in Addp and Copyp are public
compared to Add and Copy.

Lemma 2 (Security of Addp). Addp is (Sk, f)-RPC with input sharings a[`], b[`] and output
sharing c[`] if Add is (Sk, f)-RPC.

Lemma 3 (Security of Copyp). Copyp is (Sk, f)-RPC with input sharings a[`] and output
sharing b[`], c[`] if Copy is (Sk, f)-RPC.

According to Proposition 1 and Theorem 1, we derive the following lemma. Notably,
the (Sk, f)-RPC of Submult is established in Lemma 5.

Lemma 4 (Security of Mulp). Mulp is (Sk, 5 · f ′)-RPC with f ′ = max{f1, f2, f3, f4}, if
Add,Copy,Mul,Submult are (Sk, fi)-RPC for i ∈ [4] respectively.

540 Random Probing Security with Precomputation

Lemma 5 (Security of Submult). Submult is (Sk, 2 · f)-RPC with f 6 7 ·max{fadd, fcopy,

fadd,fo, flin,fo}, where Add,Copy, Ãddfo(k), L̃info(k) are (Sk, fadd)-RPC, (Sk, fcopy)-RPC,
(Sk, fadd,fo)-RPC and (Sk, flin,fo)-RPC respectively.

Proof. In this proof, we assume that f[`] and h[`] are public. As a result, the leakage of
each r1

1,i (resp. r1
2,i) is equivalent to that of ei (resp. gi) for i ∈ [`]. And thanks to the

(Sk, fadd,fo)-RPE of Ãddfo(k) at step 3, we have

Pr(Ie /∈ Sk) = Pr
(
(Ie /∈ Sk) ∨ (Ir1

1
/∈ Sk)

)
= 2 · fadd,fo

where Ie, Ir1
1
are the output of Sim1 for e[`] and r1

1,[`] in the experiment of RPC. Similarly,
there is also Pr(Ig /∈ Sk) = 2 · fadd,fo for g`. We stress that r1

1,[`] and r1
2,[`] are the outputs

of Copy at steps 2 and 3 of the precomputation phase, and their other outputs are the
inputs of Add. Thus Ir1

1
/∈ Sk and Ir1

2
/∈ Sk only if all gadgets above do not fail. Finally,

Ia ∈ Sk and Ib ∈ Sk unless L̃info(k) fail at steps 2 and 4 of the online phase respectively.
Therefore we have

Pr
(
(Ia /∈ Sk

)
∨ (Ib /∈ Sk)

)
= 1− (1− 2 · fadd) · (1− 2 · fcopy)2 · (1− 2 · fadd,fo)2 · (1− 2 · flin,fo)2

6 1− (1− 2 ·max{fadd, fcopy, fadd,fo, flin,fo})7

6 2 · 7 ·max{fadd, fcopy, fadd,fo, flin,fo} .

According to the definition of RPC, let Pr
(
(Ia /∈ Sk

)
∨ (Ib /∈ Sk)

)
= 2 · f , so that Submult

is (Sk, 2 · f)-RPC with f 6 7 ·max{fadd, fcopy, fadd,fo, flin,fo}.

Instead of providing formal security proofs of Addfo and Linfo, we use the formal
verification tool VRAPS2 proposed in [BCP+20] to generate their failure probability for
(t, f)-RPE directly with n = 3, t = 1. For Addfo,

f1 = 4p2 + 153p3 + 3 019p4 + 3 9645p5 +O(p6)
f2 = 12p2 + 404p3 + 6 939p4 + 31 806p5 +O(p6)
f12 = 2p3 + 108p4 + 2 381p5 +O(p6)

with the max tolerant leakage probability log pmax = −5.01, where f1 (resp. f2) is the
failure probability of â (resp. b̂) and f12 is the failure probability of both â and b̂. For
Linfo,

f = 12p2 + 263p3 + 1140p4 + 2832p5 +O(p6)

with the max tolerant leakage probability log pmax = −4.63. Unfortunately, the amplifi-
cation of Addfo is d = 3

2 instead of 2, so the amplification order of the k-time expanded
circuit turns to (3

2)k. Nevertheless, we have shown that the Addfo is memory-friendly in
Section 3.3.

The security of Algorithm 9 is shown in Theorem 2. The definition of TRPE is provided
in Appendix A.

Theorem 2 (Security of Lin). Let Refresh be a (t, f)-TRPE n-share refresh gadget of
amplification order d. Then Lin instantiated with Refresh is (t, f ′)-RPE of amplification
order d.

Proof. Since Refresh is (t, f)-RPE with amplification order d, we choose the simulator
of Refresh as the simulator of Lin. We assume the leakage wire set of Lin is W with

2The construction and formal verification of VRAPS are also shown in [BCP+20].

Bohan WangFanjie JiYiteng SunWeijia Wang 541

|W| = d1 + d2 < d 6 t + 1, and W1 are the leakage set of Refresh with |W1| = d1.
According to Definition 3, any leakage wire in the Refresh can be simulated by b|I′ , where
I ′ is generated by the simulator of Refresh and |I ′| = min(t, d1). Besides, we put i into I ′′
if ai or bi is leaked, and we have |I ′′| 6 d2. Therefore, we can simulate all leakage wires
with a|I where I = I ′ ∪ I ′′ and |I| < d, namely |I| 6 t. So we deduce that the simulator of
Refresh can refer to (t, f ′)-RPE of Lin with amplification order d.

Lemma 6 (Security of Linp). Linp is (Sk, f)-RPC for input sharing a[`] if Lin is (Sk, f)-
RPC.

Finally, we present the security analysis of Addp,Copyp,Mulp and Linp, along with their
invoking gadgets, in Table 2 with n = 3. All invoking gadgets are detailed in Appendix A.
Additionally, the tolerant leakage probability of Addp,Copyp,Mulp and Linp is chosen as
the minimum value among their invoking gadgets: specifically, p(1)

add, p
(1)
copy, p

(1)
copy, p

(1)
mult (i.e.

the tolerant leakage probability of the initial circuit compiler) and min{pfo
add, p

fo
lin} = 2−5.01.

Thanks to the RPC security of Addp,Copyp,Mulp and Linp, we establish the following
theorem.

Theorem 3. Let C be a circuit, let Addp,Copyp,Mulp and Linp be the base gadgets of the
circuit compiler (Enc,CC,Dec), And we define CC(·) as the operation to replace all gates
of the circuit to the base gadgets. Then the compiled circuit CC(C) is (p, |C| · fmax)-RPS
where fmax is the maximum failure probability of the base gadgets.

Table 2: Security and tolerant leakage probability of our circuit compiler with n =
3, established using Add1,Copy1,Mul1 as proposed in [BRT21]. The tolerant leakage
probability and amplification order are obtained from their respective papers. The tolerant
leakage probability and amplification order of Addfo and Linfo are discussed in this section.

Additionally, all refresh gadgets without online shares invoke the ISW refresh gadget
proposed in [DDF14], proven as (t, f)-TRPE in [BRT21] with amplification order

min(t+ 1, n− t). According to [BRT21], Add1,Copy,Mul1 are (t, f)-RPE with
amplification order min(t+ 1, n− t) with the ISW refresh.

RPE RPC Amplification order Tolerant leakage probability
Add1 X X 2 log p(1)

add = −4.51
Copy1 X X 2 log p(1)

copy = −6.10
Mul1 X X 2 log p(1)

mult = −8.24
Addfo X X 3

2 log pfo
add = −5.01

Linfo X X 2 log pfo
lin = −4.63

Addp × X 2k log padd = −4.51
Copyp × X 2k log pcopy = −6.10
Mulp × X (3

2)k log pmult = −8.241

Linp × X 2k log plin = −4.39
1 The tolerant leakage probability of Mulp is the least tolerant leakage probability of its
component gadgets, i.e., the least one among p

(1)
add, p

(1)
copy and p

(1)
mult.

5 Application to Bitsliced AES and Results
5.1 Application and Performance
We describe AES and its bitslicing approach in Appendix C.1 and present its masked
implementations in Appendix C.2. Then we consider implementations on the ARM Cortex
M architecture, namely ChipWhisperer STM32F415 UFO target board with 192 KB
memory. Since there are barely any implementations in the random probing model, we

542 Random Probing Security with Precomputation

target some outstanding AES implementations under the probing model instead of the
random probing model. Moreover, the performance of our work is comparable to these
implementations in execution with a better security. However, we emphasize that our
implementation is only a proof-of-concept and the actual performance would require
carefully examining the assembly code depending on the specific device targeted. In
addition, the round keys are pre-extended and stored in a masked form, which is a common
practice in masked implementation and helps improve the performance.

The first benchmark is the implementation of AES proposed in [WGY+22], known as
the first work with such precomputation paradigm. We stress that the work in [WGY+22]
implements inner product masking and hence can not be applied to the bitsliced imple-
mentations. The second benchmark is the state-of-the-art precomputable implementation
of AES proposed in [WJZY23], which is the best-known implementation for the probing
secure bitsliced AES in precomputation paradigm. The third benchmark is the bitsliced
implementation proposed in [GR17], which is the best-known implementation for the
bitsliced AES in general. The last benchmark is [BCP+20], the only AES implementation
with random probing security to the best of our knowledge. Since there is no directly
measured execution cycles, we use the data in [BCP+20] adapted from millisecond to
cycle calculated by the CPU frequency in their execution, although the implementation
in [BCP+20] is neither precomputable nor bitsliced.

The performance results for n = 3, 9, 27 are summarized in Table 3, where timings are
given in kilos of clock cycles (Kcycles). It is shown that the efficiency of our work is higher
by 9 times to 227 times compared with the other random probing secure implementation
proposed in [BCP+20]. Besides, the memory cost of our work is close to that of the
precomputable probing secure algorithm proposed in [WGY+22]. In addition, the data
that are not mentioned in the literature (e.g., execution cycles with n = 27 and code size
of some schemes) are marked as ‘−’. It should be noted that, our works are slower than
the probing secure ones [WGY+22, WJZY23, GR17], but the random probing security are
proven stronger than the probing one.

Notably, the code size of precomputation phase is lower than the online phase in our
implementations, since the code of precomputation phase is written by C language while
that of online phase is written by assembler one.

Table 3: Comparison of masked implementations.

Security
model n

Kcycles for
precomp.

Random
bits

Memory for
precomp.

Kcycles for
online.

Code size
(pre/online)

[WGY+22]
Probing

3

705 96 B 5.63 KB 60 −
[WJZY23] 68 2.22 KB 2.91 KB 50 −
[GR17] − 3.75 KB − 83.9 7.5 KB

[BCP+20] Random
probing

− 84.5 KB − 2 0871 −
Our Work 5 977 103 KB 7.5 KB 231 22.7/79.9 KB
[WGY+22]

Probing
9

3 662 1.5 KB 11 KB 137 −
[WJZY23] 446 23.88 KB 11.66 KB 92.27 −
[GR17] − 45 KB − 404.5 7.5 KB

[BCP+20] Random
probing

− 2 760 KB − 22 632 −
Our Work 137 436 2 610 KB 22.5 KB 578 22.7/79.9 KB
[WGY+22]

Probing
27

− 15.8 KB 26.5 KB − −
[WJZY23] − 233.53 KB 37.88 KB − −
[GR17] − 438.75 KB − 2 783 7.5 KB

[BCP+20] Random
probing

− 67 499 KB − 387 108 −
Our Work 2 957 229 57 355 KB 67.5 KB 1 704 22.7/79.9 KB

1 The executing cycles of AES in [BCP+20] are scored in milliseconds. To complete the compar-
ison, we calculate the execution cycles by multiplying the execution time and the CPU frequency
in [BCP+20].

Bohan WangFanjie JiYiteng SunWeijia Wang 543

5.2 Practical Evaluations
We run the AES round function on a ChipWhisperer STM32F415 UFO target board and
collect its power traces with Picoscope 5244D. Besides, we perform a fixed vs. random
Welch’s T-test with 1 million fixed and random inputs respectively to verify the security
order in practice.

Figure 7 provides the first-order T-test results for AES round function. We stress that
all tested phases are the online ones since there is no secret in the precomputation phases.
Moreover, Figures 7(c) and 7(f) provide the variations of the maximum absolute T-values
changing with the traces’ number. As the comparison, we also test the situations without
randomness in Figures 7(b) and 7(e), where the absolute T-values are quite high with only
10 000 traces. In conclusion, there is no first-order leakage for the compiler of both n = 3
and n = 9.

Besides, as the two-variant second-order t-test is highly time- and memory-intensive in
our case of software implementation, we perform univariate second-order T-test for our
implementations, resulting in Figure 8. The versions without randomness are omitted since
they have failed in the first-order T-test. Similar to Figures 7(c) and 7(f), Figures 8(b)
and 8(d) provide the variations of the maximum absolute T-values in the univariate
second-order T-test. In summary, it exhibits no univariate second-order leakage for the
compiler of both n = 3 and n = 9.

(a) Compiler of n=3, RNG is on. (b) Compiler of n=3, RNG is off. (c) Evolution of the T-values, n=3

(d) Compiler of n=9, RNG is on. (e) Compiler of n=9, RNG is off. (f) Evolution of the T-values, n=9.

Figure 7: First-order T-test results.

6 Conclusion and Discussions
We propose the first generic precomputable random probing secure circuit compiler with
constant leakage probability. Using this compiler, any given (Sk, f)-RPC circuit compiler
can be transformed into a precomputable (Sk, 5 · f)-RPC one with leakage probability
p 6 min{p, 2−5.01}, where p is the tolerant leakage probability of the initial circuit compiler.

As for the efficiency, each precomputable `-share multiplication gadget incurs a memory
cost of 4`, while the memory cost of each other gadgets is 1. Additionally, the online
computation complexity of our compiler is O(`). To validate this, we implemented AES-128
using our compiler and compared its memory cost and execution cycles in the online phase
with state-of-the-art works on masking AES-128 implementations.

It should be noted that, the usage of the precomputation paradigm faces certain
limitations, such as the high complexity of the precomputation phase. This paradigm

544 Random Probing Security with Precomputation

(a) Compiler of n=3, RNG is on. (b) Evolution of the T-values, n=3.

(c) Compiler of n=9, RNG is on. (d) Evolution of the T-values, n=9.

Figure 8: Univariate second-order T-test results.

represents a trade-off between precomputation and online computation, with applications
that benefit from sufficient idle time of the cryptographic device, such as challenge-response
protocols, as discussed in the introduction. Additionally, situations where large amounts of
data need to be encrypted urgently may render this approach inadequate. To address this
issue, leakage-resistant cryptographic modes can be employed (see, e.g., [PSV15, BGP+20]
for an incomplete list of literature), which require masking only a few blocks, while the
majority of the operations can be executed without side-channel protection.

Acknowledgments
The authors would like to thank the reviewers for their helpful comments and suggestions.
This work was supported by the National Natural Science Foundation of China (Grant
No. 62372273), the National Key Research and Development Program of China (No.
2021YFA1000600), the Program of Taishan Young Scholars of the Shandong Province,
the Program of Qilu Young Scholars (No. 61580082063088) of Shandong University,
Department of Science & Technology of Shandong Province (SYS202201) and Quan Cheng
Laboratory (QCLZD202306).

References
[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular

approach. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III, volume
10993 of Lecture Notes in Computer Science, pages 427–455. Springer, 2018.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International

Bohan WangFanjie JiYiteng SunWeijia Wang 545

Conference on the Theory and Applications of Cryptographic Techniques, Vi-
enna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture
Notes in Computer Science, pages 616–648. Springer, 2016.

[BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and
Abdul Rahman Taleb. Random probing security: Verification, composition, ex-
pansion and new constructions. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part I, volume 12170 of Lecture Notes in Computer
Science, pages 339–368. Springer, 2020.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson,
editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes
in Computer Science, pages 169–188. Springer, 2011.

[BGP+20] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. Tedt, a leakage-resist AEAD mode for high physical security
applications. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):256–320,
2020.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques
with applications to cryptology. J. Cryptol., 26(2):280–312, 2013.

[BRT21] Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb. On the power of
expansion: More efficient constructions in the random probing model. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part II, volume 12697 of Lecture Notes in Computer Science,
pages 313–343. Springer, 2021.

[BRTV21] Sonia Belaïd, Matthieu Rivain, Abdul Rahman Taleb, and Damien Vergnaud.
Dynamic random probing expansion with quasi linear asymptotic complexity.
In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December
6-10, 2021, Proceedings, Part II, volume 13091 of Lecture Notes in Computer
Science, pages 157–188. Springer, 2021.

[CFOS21] Gaëtan Cassiers, Sebastian Faust, Maximilian Orlt, and François-Xavier Stan-
daert. Towards tight random probing security. In Tal Malkin and Chris Peikert,
editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part III, volume 12827 of Lecture Notes in Computer Science,
pages 185–214. Springer, 2021.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel mask-
ing with pseudo-random generator. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture
Notes in Computer Science, pages 342–375. Springer, 2020.

546 Random Probing Security with Precomputation

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,
2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
441–458. Springer, 2014.

[CPRR13] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Shiho Moriai, editor,
Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore,
March 11-13, 2013. Revised Selected Papers, volume 8424 of Lecture Notes in
Computer Science, pages 410–424. Springer, 2013.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 -
33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 423–440. Springer,
2014.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-
Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, 2012.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis
(the "duplication" method). In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume
1717 of Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking
be in software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture
Notes in Computer Science, pages 567–597, 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryptol-
ogy - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa

Bohan WangFanjie JiYiteng SunWeijia Wang 547

Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel at-
tacks: A formal security proof. In Thomas Johansson and Phong Q. Nguyen,
editors, Advances in Cryptology - EUROCRYPT 2013, 32nd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes
in Computer Science, pages 142–159. Springer, 2013.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
resilient authentication and encryption from symmetric cryptographic primi-
tives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages 96–108. ACM, 2015.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, Cryp-
tographic Hardware and Embedded Systems, CHES 2010, 12th International
Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume
6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

[VV21] Annapurna Valiveti and Srinivas Vivek. Higher-order lookup table masking
in essentially constant memory. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(4):546–586, 2021.

[WGY+22] Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji, and Yang Su. Side-channel
masking with common shares. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(3):290–329, 2022.

[WJZY23] Weijia Wang, Fanjie Ji, Juelin Zhang, and Yu Yu. Efficient private circuits with
precomputation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(2):286–
309, 2023.

A Gadgets and Notions of the Related Works
Definition 11 (TRPE [BRT21]). Let f : R → R. An n-share gadget G : (Kn)2 → Kn
is (t, f)-RPE for some p ∈ [0, 1], if there exists a deterministic algorithm SimG

1 and a
probabilistic algorithm SimG

2 such that for every input (x̂, ŷ) ∈ (Kn)2 and for every set
J ⊆ [n], the random experiment

W ← LeakingWires(G, p) ,

(I1, I2, J
′)← SimG

1 (W, J) ,

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

548 Random Probing Security with Precomputation

Algorithm 10 Addition Gadget Add1 [BRT21]
Input: input sharings a[n], b[n]
Output: output sharing c[n] of a+ b
1: e[n] ← Refresh(a[n])
2: f[n] ← Refresh(b[n])
3: c[n] ← e[n] + f[n]

Algorithm 11 Copy Gadget Copy1 [BRT21]
Input: input sharing a[n]
Output: output sharings b[n], c[n] fresh copies of a[n]
1: b[n] ← Refresh(a[n])
2: c[n] ← Refresh(a[n])

Algorithm 12 Multiplication Gadget Mul1 [BRT21]
Input: input sharings a[n], b[n], refresh gadget Grefresh
Output: output sharing c[n] of a · b
1: (bi,[n])← Refresh(b[n]) for i ∈ [n]
2: r[n],[n] ← $
3: p[n],i ← a[n] · b[n],i + r[n],i for i ∈ [n]
4: (v1, . . . , vn), (x1, . . . , xn)← (0, . . . , 0), (0, . . . , 0)
5: v[n] ← v[n] + pn,i for i ∈ [n]
6: x[n] ← x[n] + ri,[n] for i ∈ [n]
7: c[n] ← v[n] + x[n]

Algorithm 13 ISW Refresh Refresh [DDF14]
Input: input sharing a[n]
Output: output sharing b[n] such that b1 + · · ·+ bn = a1 + · · ·+ an
1: b[n] ← a[n]
2: for i← 1 to n do
3: for j ← i+ 1 to n do
4: ri,j ← $
5: bi ← bi + ri,j
6: bj ← bj + ri,j
7: end for
8: end for

ensures that

1. the failure events F1 ≡
(
|I1| > min (t, |W|)

)
and F2 ≡

(
|I2| > min (t, |W|)

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J ′ is such that J ′ = J if |J | 6 t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,

3. the output distribution satisfies

out
id=
(

AssignWires
(
G,W, (x̂, ŷ)

)
, ẑ|J′

)
,

where ẑ = G(x̂, ŷ).

Bohan WangFanjie JiYiteng SunWeijia Wang 549

B The Reused Variables in SubBytes
The bitsliced SubBytes in [GR17] is inspired from [BMP13]. In the following we show the
operations in [GR17]. It involves 115 logic gates including 32 logic AND. The circuit is
composed of 3 parts: the top linear transformation involving 23 XOR gates and mapping
the 8 S-box input bits xp, . . . , x7 to 22 new bits x7, y1, . . . , y21; the middle non-linear
transformation involving 30 XOR gates and 32 AND gates and mapping the previous 23
bits to 18 new bits zp, . . . , z17; and the bottom linear transformation involving 26 XOR
gates and 4 XNOR gates and mapping the 18 previous bits to the 8 S-box output bits
sp, . . . , s7.

− top linear transformation −

y14 = x3 + x5 y1 = tp + x7 y15 = t1 + x5 y17 = y10 + y11
y13 = xp + x6 y4 = y1 + x3 y20 = t1 + x1 y19 = y10 + y8
y12 = y13 + y14 y2 = y1 + xp y6 = y15 + x7 y16 = tp + y11
y9 = xp + x3 y5 = y1 + x6 y10 = y15 + tp y21 = y13 + y16
y8 = xp + x5 t1 = x4 + y12 y11 = y20 + y9 y18 = xp + y16
tp = x1 + x2 y3 = y5 + y8 y7 = x7 + y11

− middle non-linear transformation −

t2 = y12 · y15 t23 = t19 + y21 t34 = t23 + t33 z2 = t33 · x7
t3 = y3 · y6 t15 = y8 · y10 t35 = t27 + t33 z3 = t43 · y16
t5 = y4 · x7 t26 = t21 · t23 t42 = t29 + t33 z4 = t40 · y1
t7 = y13 · y16 t16 = t15 + t12 z14 = t29 · y2 z6 = t42 · y11
t8 = y5 · y1 y18 = t6 + t16 t36 = t24 · t35 z7 = t45 · y17
t10 = y2 · y7 t20 = t11 + t16 t37 = t36 + t34 z8 = t41 · y10
t12 = y9 · y11 t24 = t20 + y18 t38 = t27 + t36 z9 = t44 · y12
t13 = y14 · y17 t30 = t23 + t24 t39 = t29 · t38 z10 = t37 · y3
t4 = t3 + t2 t22 = t18 + t19 z5 = t29 · y7 z11 = t33 · y4
t6 = t5 + t2 t25 = t21 + t22 t44 = t33 + t37 z12 = t43 · y13
t9 = t8 + t7 t27 = t24 + t26 t40 = t25 + t39 z13 = t40 · y5
t11 = t10 + t7 t31 = t22 + t26 t41 = t40 + t37 z15 = t42 · y9
t14 = t13 + t12 t28 = t25 · t27 t43 = t29 + t40 z16 = t45 · y14
t17 = t4 + t14 t32 = t31 · t30 t45 = t42 + t41 z17 = t41 · y8
t19 = t9 + t14 t29 = t28 + t22 zp = t44 · y15
t21 = t17 + y20 t33 = t32 + t24 z1 = t37 · y6

− bottom linear transformation −

t46 = z15 + z16 t49 = z9 + z10 t61 = z14 + t57 t48 = z5 + z13
t55 = z16 + z17 t63 = t49 + t58 t65 = t61 + t62 t56 = z12 + t48
t52 = z7 + z8 t66 = z1 + t63 sp = t59 + t63 s3 = t53 + t66
t54 = z6 + z7 t62 = t52 + t58 t51 = z2 + z5 s1 = t64 + s3
t58 = z4 + t46 t53 = zp + z3 s4 = t51 + t66 s6 = t56 + t62
t59 = z3 + t54 t50 = z2 + z12 s5 = t47 + t65 s7 = t48 + t60
t64 = z4 + t59 t57 = t50 + t53 t67 = t64 + t65
t47 = z10 + z11 t60 = t46 + t57 s2 = t55 + t67

According to the circuit, we count the number of occurrences of all intermediate variables
which is provided in Tables 4, 5, 6 and 7. There are totally 22 + 29 + 122 + 26 = 229 used
times for all variables in SubBytes instead of 115 × 2 = 230, which is bacause there is
an s3 used in the calculation of s1 which is not counted. Therefore the Copyp number is
229− (8 + 21 + 68 + 18) = 114 for a single SubBytes, and 114× 10 = 1 140 for the whole
AES encryption.

Table 4: Number of occurrences for x[0,7]

Variables xp x1 x2 x3 x4 x5 x6 x7 Total
Times 5 2 1 3 1 3 2 5 22

550 Random Probing Security with Precomputation

Table 5: Number of occurrences for y[21]

Variables y1 y2 y3 y4 y5 y6 y7 y8
Times 5 2 2 2 3 2 2 4

Variables y9 y10 y11 y12 y13 y14 y15 y16
Times 3 4 5 3 4 3 4 4

Variables y17 y18 y19 y20 y21 Total
Times 2 1 1 2 1 59

Table 6: Number of occurrences for t[0,67]

Variables tp t1 t2 t3 t4 t5 t6 t7 t8 t9
Times 3 2 2 1 1 1 1 2 1 1

Variables t10 t11 t12 t13 t14 t15 t16 t17 t18 t19
Times 1 1 1 2 2 1 2 1 1 1

Variables t20 t21 t22 t23 t24 t25 t26 t27 t28 t29
Times 1 2 3 3 4 2 2 3 1 5

Variables t30 t31 t32 t33 t34 t35 t36 t37 t38 t39
Times 1 1 1 6 2 1 2 4 1 1

Variables t40 t41 t42 t43 t44 t45 t46 t47 t48 t49
Times 4 3 3 2 2 2 2 1 2 1

Variables t50 t51 t52 t53 t54 t55 t56 t57 t58 t59
Times 1 1 1 1 1 1 1 2 2 2

Variables t60 t61 t62 t63 t64 t65 t66 t67 Total
Times 1 1 2 2 2 2 2 2 122

Table 7: Number of occurrences for z[0,17]

Variables zp z1 z2 z3 z4 z5 z6 z7 z8 z9
Times 1 1 2 2 2 2 1 2 1 1

Variables z10 z11 z12 z13 z14 z15 z16 z17 Total
Times 2 1 2 1 1 1 2 1 26

C AES and Its Bitslicing Approach with Masking
C.1 Description of AES and its Bitslicing Approach
The AES-128 block cipher [DR02] is performed on 16 bytes called state. The round
function is made up of four types of transformations: AddRoundKey, SubBytes, ShiftRows
and MixColumns. In AddRoundKey, the state is added with the subkey (that is derived
from the key) using bitwise XOR. ShiftRows and MixColumns can be regarded as linear
operations over F28 , and thus they can be implemented by a number of XOR operations.
In the SubBytes transformation, a nonlinear function F28 → F28 called S-box is computed
over each of the 16 bytes of the state.

We consider 16 binary operations in parallel, taking the same bitsliced implementation
approach as in [GR17]. We use the bitslice at the S-box level that packs the ith bits of 16
S-boxes’ inputs, and process 16 S-boxes in parallel. It conveys that we use the 16 bits of
one register. We use the compact representation proposed in [BMP13] to implement the
AES S-box. Their circuit involves 115 logic gates, including 32 logic AND. Furthermore,
the MixColumns and ShiftRows can be evaluated using the strategy given in [GR17], which
takes 43 and 144 one-cycle instructions respectively.

C.2 Masked Implementations
After bitslicing the cipher, we adopt the strategy presented in Section 3.1 to obtain the
masked implementation for AES. Concretely, we replace the XOR gates with Addp and
the AND gates with Mulp. Once there is a reused sharing, we add a Copyp to ensure the
difference of all sharings. The precomputation takes the random bits and produces the

Bohan WangFanjie JiYiteng SunWeijia Wang 551

precomputed values, and the online phase takes the precomputed values and input shares
to calculate the results. We use Add1, Copy1, Mul1, Lin and their expansions to construct
Addp, Mulp and Linp in the implementation.

AddRoundKey. In AddRoundKey, there are 8× 11 = 88 bitwise additions and no other
gadgets.

SubBytes. In the S-boxes, it contains 32 × 10 = 320 bitwise multiplications and
83 × 10 = 830 bitwise additions, and there are 4 × 10 = 40 Linp used for the 4 XNOR
gates in S-boxes. Besides, there are 114× 10 = 1 140 Copyp needed in the S-boxes, which
is shown in Appendix B.

ShiftRows. In our work, the ShiftRows is implemented as Algorithm 14. It must be
applied on the bits of each vector wk (since each nibble of wk corresponds to a different
row of the state) for k ∈ [8]. And there are totally 3× 3× 8× 10 = 720 bitwise additions,
3× 3× 8× 10 = 720 Copyp and 3× 5× 8× 10 = 1 200 Linp for the ShiftRows among the
AES.

Algorithm 14 Bitsliced ShiftRows [GR17]
Input: 16-bit bitslicing inputs w[8] for ShiftRows
Output: 16-bit bitslicing outputs z[8] for ShiftRows
1: t← 0
2: for i← 1 to 3 do
3: t← t+ 24−i

4: x[8] ← w[8] ·
(
0x0F� (4× i)

)
5: y[8] ← x[8] ·

(
t� (4× i)

)
6: z[8] ← x[8] + y[8]
7: z[8] ← (z[8] � i) +

(
y[8] � (4− i)

)
8: v[8] ← w[8] ·

(
0x0F� (4× i)

)
9: z[8] ← z[8] + v[8]
10: end for

MixColumns. According to [GR17], the MixColumns can be described as Algorithm 15,
where ≪ denotes the rotate left operation on 16 bits. And there are 38× 9 = 342 bitwise
additions and Copyp, and 35× 9 = 315 Linp for the bitshift operations. So totally, there

Algorithm 15 Bitsliced MixColumns [GR17]
Input: 16-bit inputs w[8] for bitslicing with order of (w8, . . . , w1)
Output: 16-bit outputs z[8] for bitslicing with order of (z8, . . . , z1)
1: z1 ← w8 + (w8 ≪ 4) + (w1 ≪ 4) + (w1 ≪ 8) + (w1 ≪ 12)
2: z2 ← w1 + (w1 ≪ 4) + w8 + (w8 ≪ 4) + (w2 ≪ 4) + (w2 ≪ 8) + (w2 ≪ 12)
3: z3 ← w2 + (w2 ≪ 4) + (w3 ≪ 4) + (w3 ≪ 8) + (w3 ≪ 12)
4: z4 ← w3 + (w3 ≪ 4) + w8 + (w8 ≪ 4) + (w4 ≪ 4) + (w4 ≪ 8) + (w4 ≪ 12)
5: z5 ← w4 + (w4 ≪ 4) + w8 + (w8 ≪ 4) + (w5 ≪ 4) + (w5 ≪ 8) + (w5 ≪ 12)
6: z6 ← w5 + (w5 ≪ 4) + (w6 ≪ 4) + (w6 ≪ 8) + (w6 ≪ 12)
7: z7 ← w6 + (w6 ≪ 4) + (w7 ≪ 4) + (w7 ≪ 8) + (w7 ≪ 12)
8: z8 ← w7 + (w7 ≪ 4) + (w8 ≪ 4) + (w8 ≪ 8) + (w8 ≪ 12)

are 88 + 830 + 720 + 342 = 1 980 Addp, 320 Mulp, 1 140 + 720 + 342 = 2 202 Copyp and
40 + 1 200 + 315 = 1 555 Linp for the whole AES-128. Then we calculate the random bits
and memory for precomputation of Addp, Mulp, Copyp and Linp for n = 3 and k ∈ [3].

	Introduction
	Our Contribution
	Roadmap

	Preliminaries
	Notations
	Circuit and Circuit Compiler
	Random Probing Security

	Precomputation with Public Shares
	Construction for the RPC Gadgets with Public Shares
	Circuit Compiler with Public Shares
	The Memory Usage for the Gadgets with Public Shares
	Online Complexity of the Circuit Compiler
	Randomness Cost of the Circuit Compiler

	Security of the New Compiler
	Application to Bitsliced AES and Results
	Application and Performance
	Practical Evaluations

	Conclusion and Discussions
	Gadgets and Notions of the Related Works
	The Reused Variables in SubBytes
	AES and Its Bitslicing Approach with Masking
	Description of AES and its Bitslicing Approach
	Masked Implementations

